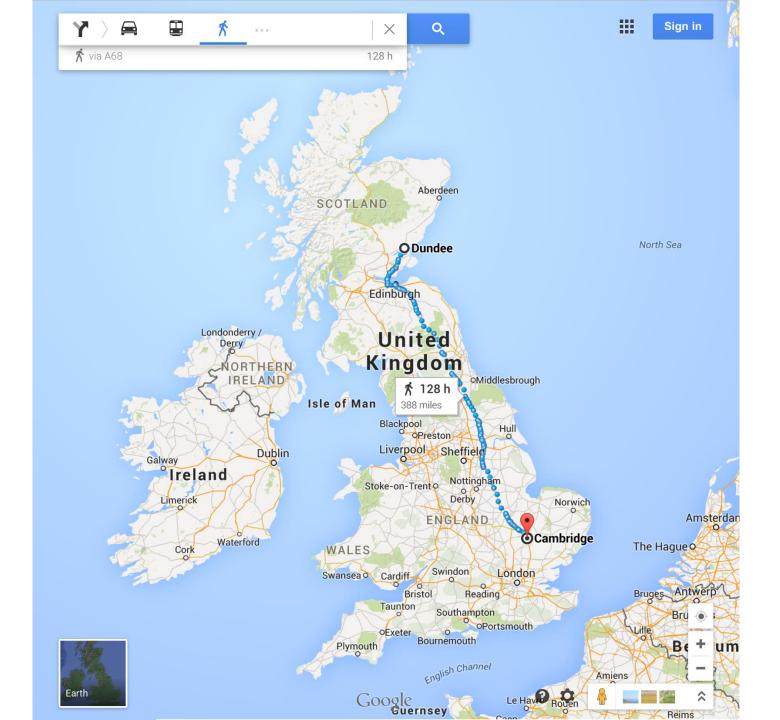
Generation, Visualisation and Analysis of Multiple Sequence Alignments


Geoff Barton

Division of Computational Biology College of Life Sciences University of Dundee, UK

twitter:@gjbarton

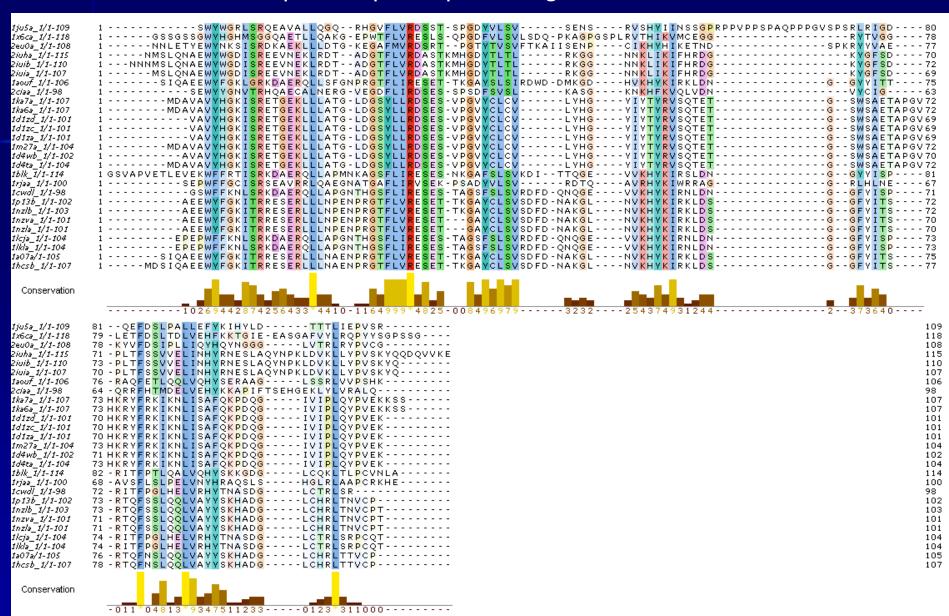
blog: geoffbarton.wordpress.com

www.compbio.dundee.ac.uk www.jalview.org Jalview Training Course – May 2015

Dundee Panorama – from Dundee Law (Hill)

>80 Research Groups, 900 staff,
Top University for Biological Sciences in the UK REF 2014
Highest ISI citation rate of Life Sciences Departments in Europe
22 Principal Investigators in top 1% of cited scientists
www.lifesci.dundee.ac.uk

School of Life Sciences Research


Recruiting 5 new research groups in Computational Biology over next 5 years

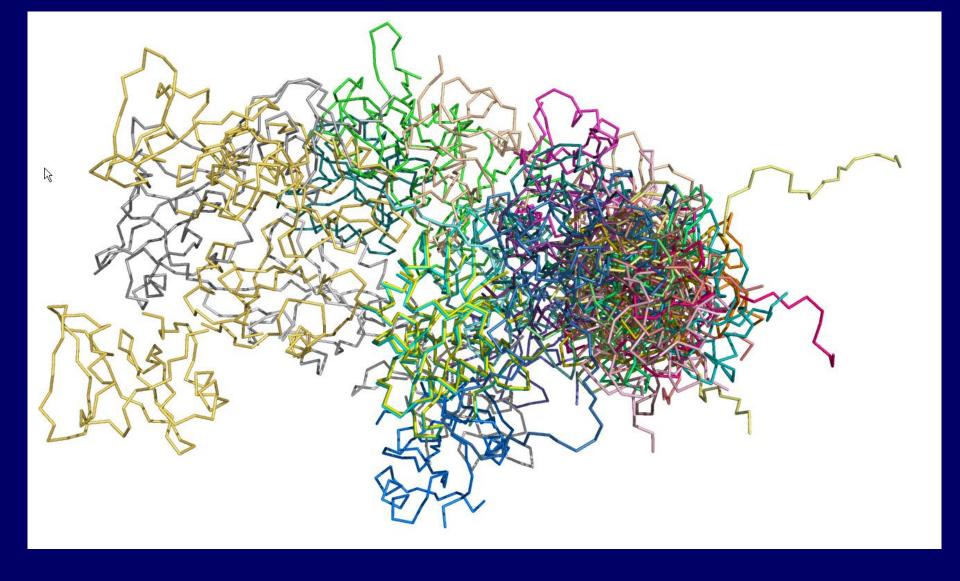
What is multiple sequence alignment (MSA)?

Alignment of three or more sequences

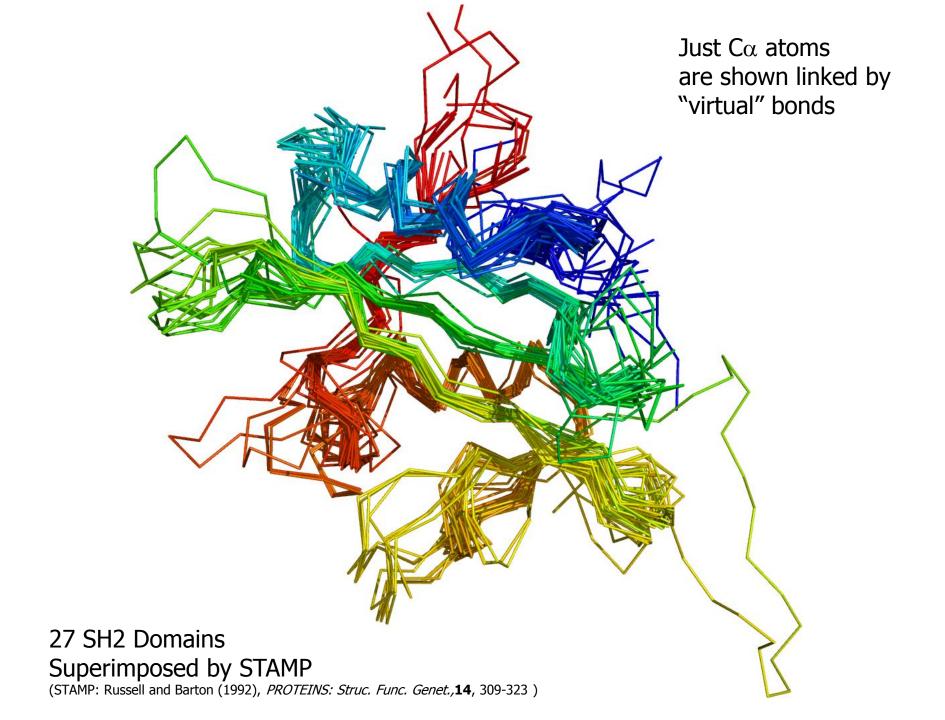
What does one look like?

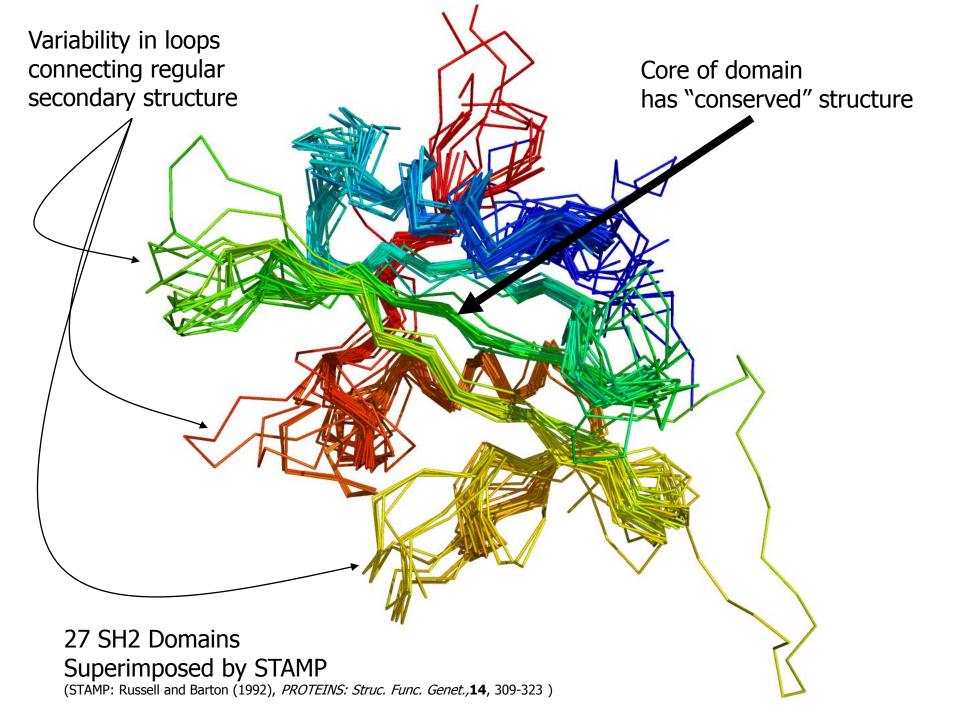
Example Multiple Sequence alignment of 27 SH2 domains

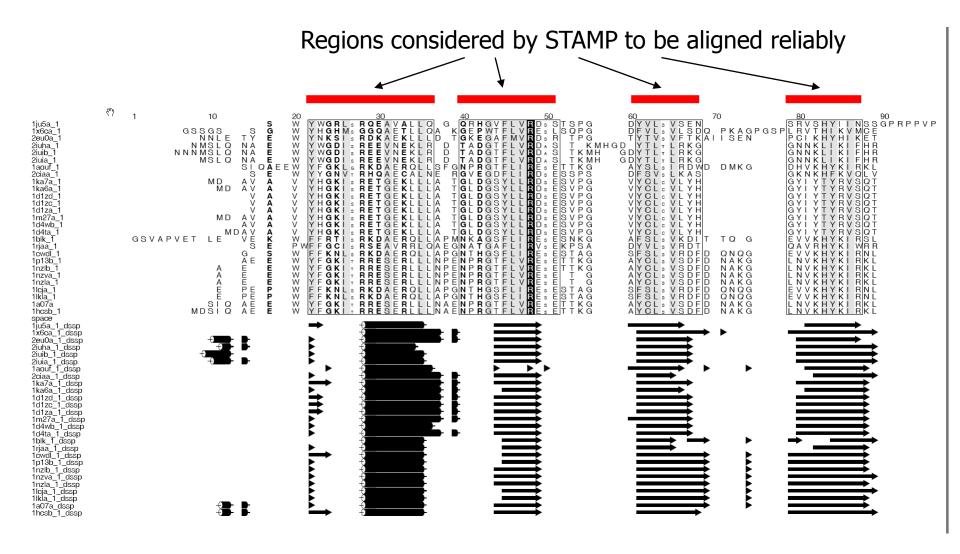
Why are Protein (multiple) Sequence Alignments Useful?


- Link proteins at the amino acid level
- Allow identification of conserved features
- Allow prediction of functionally important residues
- Basis for phylogenetic tree construction
- Basis for sensitive profile-based sequence database searching
- Basis for training many methods to predict features from sequence – e.g. secondary structure
- Standard way of describing and illustrating features of protein sequences and their relationships in publications

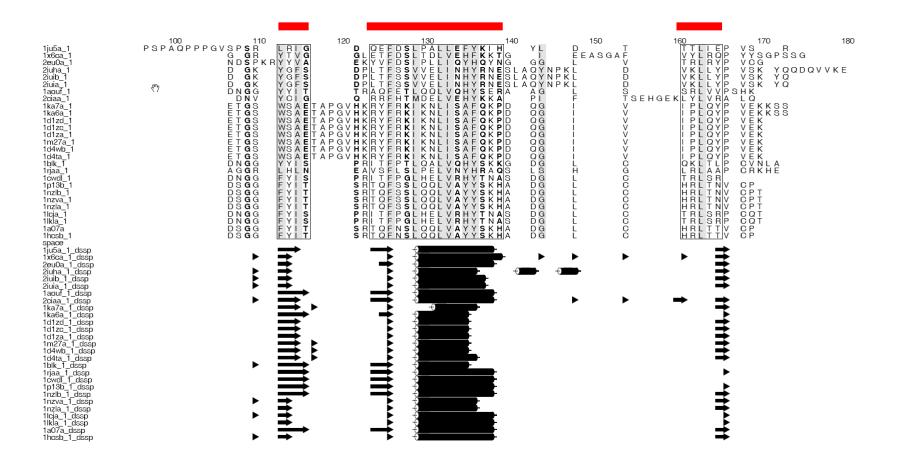
Link proteins at the amino acid level


What does this mean?


Example sequence alignment of SH2 domains


From the *three-dimensional* structures of the proteins

22 SH2 domain structures as they are if just loaded into PyMol from the PDB



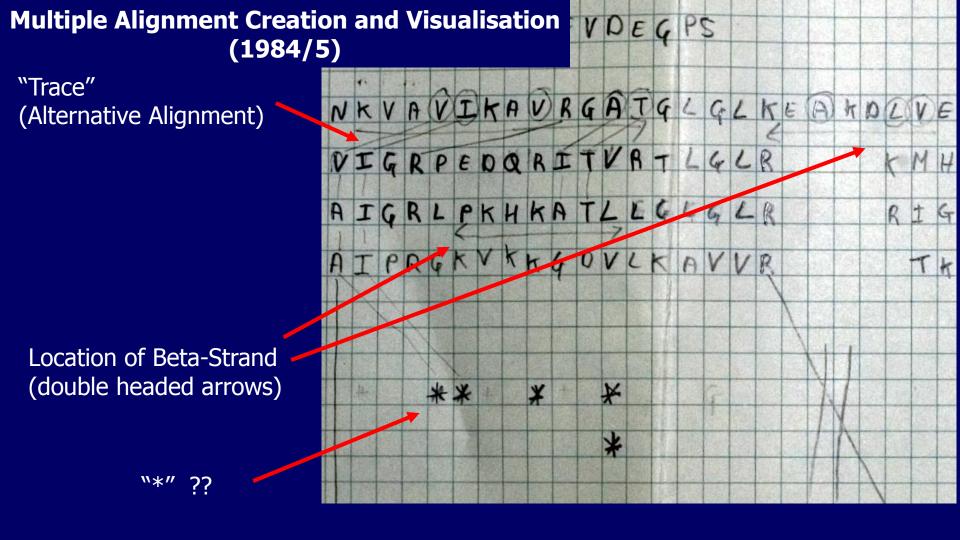
Structural alignment of 27 SH2 domains showing secondary structure – Part I

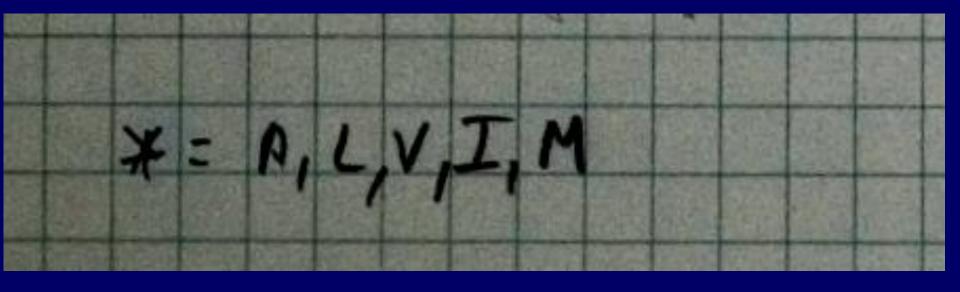
STAMP alignment – Alscript display

Structural alignment of 27 SH2 domains showing secondary structure – Part II

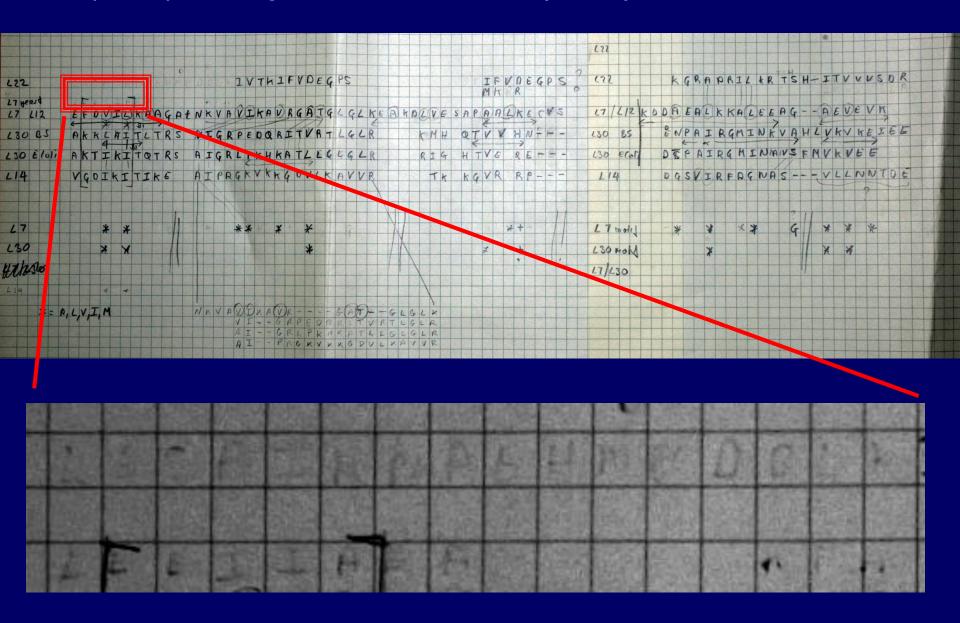
STAMP alignment – Alscript display

How are MSAs generated when we just have sequences and no knowledge of 3D structure?


Multiple Sequence Alignment from the 1960/70s


Courtesy of the University of Edinburgh

1984


- Some sequence alignment programs existed but common method was to...
- Align two sequences by writing the amino acid codes on squared paper then sliding them relative to each other to find a good match.
- Use scissors to deal with insertions/deletions
- Yes really!

Re-drawn Alternative Alignment

Multiple Sequence Alignment and Visualisation (1984/5)

How are MSAs generated?

Pair-wise sequence alignment

Alignment of *two* Protein Sequences -How?

- Need scoring scheme for matching amino acid residues.
- Need to cope with insertions and deletions (gaps or indels).
- Need algorithm to find 'best' alignment.
- Need some way of judging if the alignment is likely to be correct.

Protein Scoring Schemes

- A table of scores for aligning each possible amino acid pair.
- Simplest scheme, just scores 1 for identity and 0 for non identity.
- Better schemes weight similarities in amino acid properties or observed substitutions.
 For example, BLOSUM and PAM series.
 Virtually all of today's programs use these.

BLOSUM62 Matrix

ARNDCQEGHILKMFPSTWYVBZX	_
	- 4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1	
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1	
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1	-4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1	_
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -2 2 -3 0 0 -1	-4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1	-4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1	-4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1	-4
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 1 -3 -1 -1	-4
F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1	-4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2	-4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0	-4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0	-4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2	-4
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1	-4
V 0 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1	-4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1	-
z - 1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
* -4 -4 -4 <mark>-4 -4 -4 -4 -4 -4 </mark>	1

BLOSUM62 is a log-score matrix – more on this later...

Gap Penalties

- Score for aligning a residue or residues in one protein to a gap in the other.
- Most usual form: penalty = ul + v
- where I is the length of the gap and u and v are constants.
- u is often called the gap extension penalty, v, the gap creation penalty.

Finding the 'best' alignment

- The mathematically best alignment is the one that gives the highest score when the amino acids of the two proteins are aligned, taking account of any gaps.
- This alignment is not necessarily the one that is biologically meaningful. (more on this later)

Finding the best alignment

- Naïve way would be to generate all possible alignments of the two sequences, then take the one with the highest score according to the BLOSUM matrix.
- But... for two sequences of 100 amino acids, there are > 10⁷⁵ possible alignments...

Dynamic Programming

- Trick to avoid having to generate all possible alignments.
- First introduced in molecular biology by Needleman and Wunsch (1970).
- Many variations on the theme.
- Basis of (nearly) all sequence alignment programs.
- Finds the mathematically 'best' score for alignment of two sequences of length *M* and *N* in *MN* steps.

(a)	1:	1 A	w W		* N	I	6 R	Q.	ć	, L	C	R	P	M
i= 1	Α	1									1			
2	I					1								
3	С			1					1		1			
4	I					1								
5	N				1									
	D						1	4	3	3	2	2	0	0

There may be alternative alignments with the same score, or with scores that are very similar to the best score.

Most alignment programs only report one answer...

= 1	A	8	7	6	6	5	4	4	3	3	2	1	0	0
2	I	7	7	6	6	6	4	4	3	3	2	1	0	0
3	С	6	6	7	6	5	4	4	4	3	3	1	0	0
4	I	6	6	6	5	6	4	4	3	3	2	1	0	0
5	N	5	5	5	6	5	4	4	3	3	2	1	0	0
6	R	4	4	4	4	4	15.	4	3	3	2	2	0	0
7	C	3	3	4	3	3	3	3	4	3	3	1	0	0
,	K	3	3	3	3	3	3	3	3	3	2	1	0	0
,	С	2	2	3	2	2	2	2	3	2	3	1	0	0
v	R	2	1	1	1	1	2	1	1	1	1	2	0	0
tt	В	1	2	1	1	1	1	1	1	1	1	1	0	0
12	P	0	0	0	0	0	0	0	0	0	0	0	1	0

From: Needleman & Wunsch (1970)

Multiple Sequence Alignment

Extension of two-sequence dynamic programming

For three sequences

Need a 3-dimensional array

3- Sequenco? 3- Way Dynamic programming. - gets complicated! - AND HARD TO DRAW!

BUT NOT IMPOSSIBLE

For *n* sequences?

Need an *n*-dimensional array...

Dynamic programming for >3 sequences

- Need an N-dimensional "hypercube"
- Very complex
- Very memory intensive
- Very CPU intensive
- e.g. to align 100 sequences of length 100. Need to store 100¹⁰⁰ bytes. i.e. A BIG NUMBER!
- NOT PRACTICAL

Alternatives to dynamic programming

- Genetic Algorithms
 - Simulate process of "evolution", but for protein sequence alignments
 - Mutation/recombination of alignments
 - Has been implemented in the SAGA program

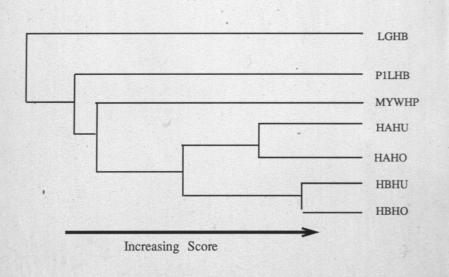
STILL IMPRACTICAL for most use.

Hierarchical multiple alignment

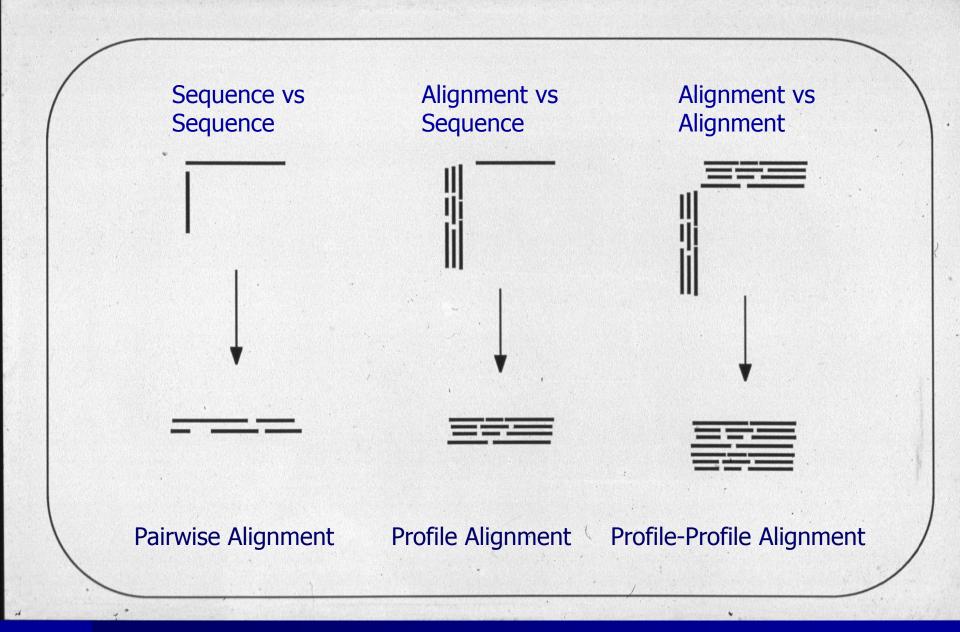
- Compare all pairs of sequences
- Generate a guide tree or dendrogram
- Follow tree from leaves to root, building the alignment as you go.
- Virtually all current programs use this approach
- Most popular program is CLUSTAL. More recent and often more accurate programs are:
 - probcons, mafft and muscle...

Example: Alignment of 7 sequences with identifier codes HAHU, HBHU etc.

"Single linkage" dendrogram.

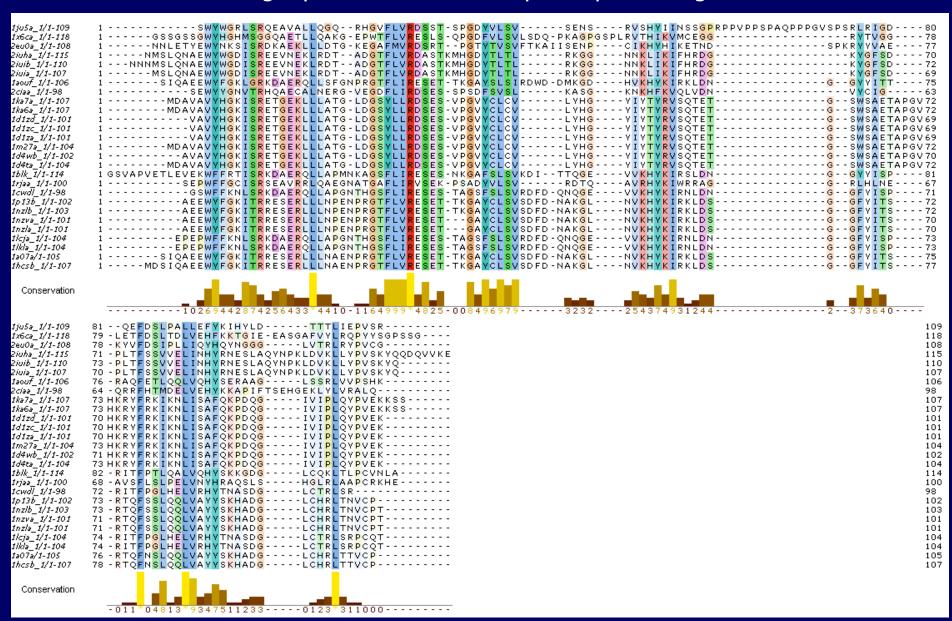

- 1. Most similar pair put together
- 2. Next most similar pair
- 3. and so on...

When one or both halves of a pair is an existing alignment, then do *profile* comparison.


PAIRWISE SCORES

	HAHU	нвни	НАНО	нвно	MYWHP	PILHB	LGHB
HAHU							
нвни	21.1	•					
НАНО	32.9	19.7					
НВНО	20.7	39.0	20.4				
MYWHP	11.0	9.8	10.3	9.7			
P1LHB	9.3	8.6	9.6	8.4	7.0		
LGHB	7.1	7.3	7.5	7.4	7.3	4.3	

CLUSTER ANALYSIS



DENDROGRAM

What is a Profile?

Making a profile: Given a multiple sequence alignment...

Amino Acid Types

```
Posn:
                     Ν
                                           E
                                                 G
                                                      Η
                                                                            М
                                                                                       Ρ
                                                                                                                       В
                                                                                                                                  Х
         95
                0
                     0
                           0
                                0
                                      0
                                           0
                                                 0
                                                      0
                                                           0
                                                                 0
                                                                      0
                                                                            0
                                                                                 0
                                                                                       0
                                                                                            0
                                                                                                  0
                                                                                                            0
                                                                                                                  0
                                                                                                                       0
                                                                                                                             0
                                                                                                                                  0
    1:
                                                                                                                                        0
                0
                                0
                                      0
                                           0
                                                      0
                                                                 0
                                                                            0
                                                                                    755
                                                                                            3
                                                                                                       0
                                                                                                                  0
    2:
                                                                                                            0
                                                                                                                       0
                                                                                                                                  0
                    15
                                                 4
                                                      4
                                                                                 3
                                                                                           60
                                                                                                48
       161
              19
                        120
                                    39
                                                               28
                                                                                     38
                                                                                                            0
                                                                                                                19
                                                                                                                       0
                                                                                                                             0
                                                     16
                                                                     21
         81
              49
                         31
                                    29
                                          58
                                                 5
                                                           3
                                                                 0
                                                                                24
                                                                                         393
                                                                                                91
                                                                                                           19
                                                                                                                  8
                                                                                                                       0
                                                                                                                             0
          4
                5
                     0
                           0
                               12
                                      0
                                           6
                                                 0
                                                      0
                                                        176
                                                                     19
                                                                          30
                                                                              162
                                                                                                           26
                                                                                                                       0
                                                                                                                             0
    5:
                                                               60
                                                                                                                                  0
          8
                    38
                       891
                                Π
                                    10
                                           5
                                                                                                       0
                                                                                                                             Π
                                                                 0
                                                                            0
                                                                                 0
                                                                                       0
                                                                                                             1
                                                                                                    956
                                                                                                           27
    7:
          9
                                           0
                                                 0
                                                      0
                                                               38
                                                                      0
                                                                            0
                                                                                 9
                                                                                       0
                                                                                                  0
                                                                                                                                  0
                                                                                                                 13
                                                                                                                      Gaps
          6
                                                 4
                                                                     17
                                                                                           22
                                                                                                                                  0
    8:
             85
                                                      2
                                                                 0
                                                                            0
                                                                                 0
                                                                                     84
                                                                                                24
                                                                                                            1
                                                                                                                                        5
         45
                                                    13
    9:
                                        196
                                                           5
                                                               24
                                                                   175
                                                                                           48
                                                                                              115
                                                                                                             4
                                                                                                                                  0
         22
              64
                    38
                               .19
                                                               39
                                                                   431
                                                                            6
                                                                                                       5
                                                                                                           43
                                                                                                                10
                                                                                                                       0
              13
                         25
                                                     13
                                                                     29
                                                                                                11
                                                                                                                                      13
  11:
                    81
                                      8
                                                                            3
                                                                                                                       0
                                                                                                                             0
                                      5
                                                          45
                                                                            9
        409
                9
                     9
                                                               35
                                                                     52
                                                                                                72
                                                                                                       5 116
                                                                                                                             0
                                                                                                                98
                                                        178
  13:
                                5
                                           0
                                                      0
                                                               70
                                                                                       0
                                                                                                       0
                                                                                                            0
                                                                                                               770
                                                                                                                       0
                                                                                                                                  0
                    52
                                                     17
                                                                                     15
                                                                                         141
  14:
         38
                           5
                                                                                                                21
                                                                                                                       0
         71
                         34
                                0
                                    30
                                                     19
                                                                                                29
                                                                                                                  6
                                                                                                                       0
  15:
                                        148
                                                                                     497
                                                                                           89
                                                                                                       0
                                                                                                           10
         20
                                                      0
                                                        236
                                                                                     24
                                                                                                21
                           0
                                0
                                      0
                                                                                                       0
                                                                                                               790
  16:
                0
                                           0
                                                                                                            0
                                                                                                                       0
                                                      5
                                                                                       8
                                                                                            3
                                                                                                             6
                                                                                                                       0
                                                                                                                10
                                                               26
          position in alignment
                                                     14
                                                                                           20
                                                                 3
                                                                      0
                                                                            0
                                                                                 0
                                                                                                 0
                                                                                                       0
                                                                                                            0
                                                                                                                  0
                                                                                                                       0
                                                     23
                                                           3
                                                               11
                                                                     48
                                                                            1
                                                                                 1
                                                                                       3
                                                                                           66
                                                                                                  2
                                                                                                       0
                                                                                                            1
                                                                                                                  2
                                                                                                                       0
  20:
                                          20
                                                                                                                                  0
                                                     50
                                                          13
                                                                          39
                                                                                                40
                                3
                                                                                     25
                                                                                         215
                                                                                                           33
  21:
         58
                  118
                         50
                                               48
                                                               32
                                                                                                                       0
                           11123
  22:
                                           0
                                                 0
                                                      0
                                                           0
                                                                                 0
                                                                                            6
                                                                                                       1
                0
                     4
                                      0
                                                                 4
                                                                      0
                                                                                                            0
                                                                                                                       0
                                                                                                                             0
                                                                                           26
  23:
         51
                    32
                                           5
                                             996
                                                                 3
                                                                      8
                                                                            1
                                                                                 0
                                                                                                  1
                                                                                                       1
                                                                                                            3
                                                                                                                  0
                                                                                                                       0
                                                                                                                             0
  24:
                     4
                               59
                                      1
                                               53
                                                      0
                                                           3
                                                               11
                                                                      0
                                                                            0
                                                                                 0
                                                                                       0
                                                                                         908
                                                                                                18
                                                                                                       3
                                                                                                            0
                                                                                                                  5
                                                                                                                       0
                                                                                                                             0
  25:
                     0
                                      0
                                               13
                                                                      0
                                                                                          76
                                                                                                       0
                                                                                                                  3
                                                                                                                       0
                                                                                                                             0
                                                                                                                                  0
                1
                           71042
                                           0
                                                                            0
                                                                                 0
                                                                                       0
                                                                                                  0
                                                                                                            0
```

Convert frequency profile into log-odds profile

In words:

log (proportion of a particular amino acid type at a position divided by proportion of that amino acid in the whole alignment)

Results in a

Negative number when amino acid is less common at a position than in the alignment as a whole. or a

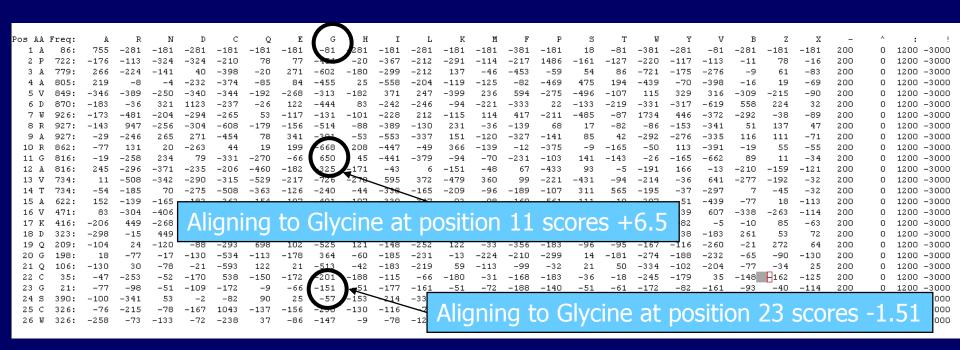
Positive number if the amino acid is more common at a position than in the alignment as a whole.

Conversion is usually more complex than this because you have to deal with the absence of amino acids at a position. This is done by taking background scores from a pair-score matrix like BLOSUM.

Example

- Alignment of 30 sequences each of 100 amino acids to give a total of 3000 amino acids
- Position 97 of the alignment has 20 prolines
- There are 300 prolines in the alignment as a whole
- (20/30)/(300/3000) = 20/3 = 6.67
- $\log(6.67) = 0.82$
- So, score in profile for proline at position 97 is 0.82
- This is sometimes called a log-likelihood ratio

Log score profile

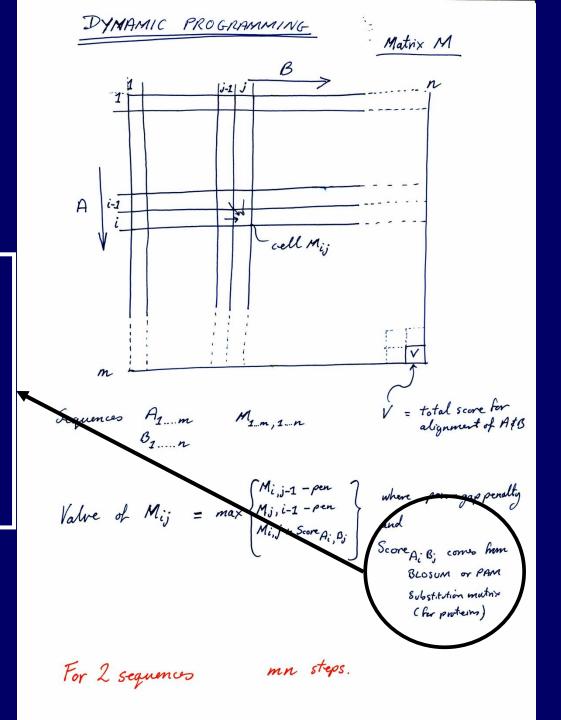

In this example log values are multiplied by 100 to allow for integer arithmetic which is faster on most computers.

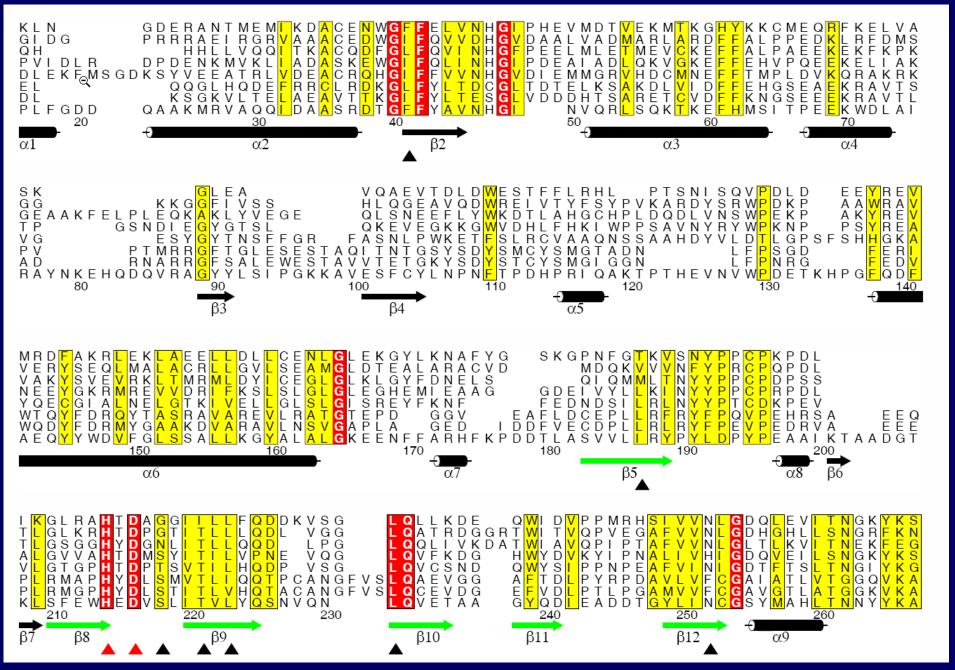
```
Pos AA Freq:
                                                                                                                                                  -81
                                                                                                                                                                                         1200 -3000
                      -113
                266
                      -224
                                                                                                  -46
                                                                                                                                   -721
                                                                                                                                                -276
                                                                                                                                                         -9
                                                                                                                                                                      -83
                                                                                                                                                                                         1200 -3000
                219
                                                                                                                      475
                                                                                                                             194
                                                                                                                                                -398
                                                                                                                                                        -16
                                                                                                                                                                19
                                                                                                                                                                      -69
                                                                                                                                                                                         1200
               -346
                      -389
                                      Glycines – gives score
               -183
                                                                                                                                                -619
                                                                                                                                                        558
               -173
                                                                                                                                                -372
                                                                                                                                                        -292
                                                                                                                                                               -38
                                                                                                                                                                      -89
                                                                                                                                                                                              -3000
                                                                                                                                                 -341
                                                                                                                                                         51
                                                                                                                                                               137
                                                                                                                                                                       47
                                                                                                                                                                                              -3000
                                                         341
                                                                       -53
                                                                                                                                                                      -71
                                                                                                 -139
                                                                                                                                                 -391
                                                                                                                                                        -19
                                                                                                                                                                      -55
                                                                                                  -70
                                                                                                        -231
                -19
                                          -331
                                                                                                                                         -165
                                                                                                                                                -662
                                                                                                                                                                11
                                                                                                                                                                      -34
                                                                                                                                                                                         1200
        816:
                      -296
                             -371
                                                 -460
                                                                                          -151
                                                                                                  -48
                                                                                                                              -5
                                                                                                                                   -191
                                                                                                                                                 -13
                                                                                                                                                       -210
                                                                                                                                                              -159
                                                                                                                                                                                         1200
        734:
                                                                                                                                                                      -32
                                                                                                                                                -297
                                                                                                                                                                      -32
                                                                            -338
                                                                      -107
                                                                            -339
                                                                                                                                                -439
        471:
                      -304
                             -406
                                    -344
                                          -152
                                                 -260
                                                                      -354
                                                                             504
                                                                                                                                                              -263
                                                                                                                                                                                         1200
                                                                                                                                                                                              -3000
               -206
                       449
                                                                            -255
                                                                                                                                                                      -63
               -298
                       -15
                                          -496
                                                                       141
                                                                            -261
                                                                                                                                                                       72
               -104
                                                                            -148
                                                                                                                                                               272
                             -120
                                     -88
                                          -293
                                                                                                                                                                                         1200 -3000
        198:
                 18
                       -77
                              -17
                                    -130
                                          -534
                                                 -113
                                                        -178
                                                                       -60
                                                                            -185
                                                                                                                                                               -90
                                                                                                                                                                     -130
                                                                                                                                                                                         1200
                                                                                                                                                                                              -3000
               -130
                                          -593
                                           538
                                                 -150
                                                                                                                                                              H162
          21:
                       -98
                                    -109
                                          -172
                                                   -9
                                                                                                                                                                    -114
        390:
               -100
                      -341
                                            -82
                                                   90
                                                                                                                                                                      -81
```

How is a profile used in alignment?

Rather than getting the score for aligning a particular residue at a position from the BLOSUM matrix take it from the profile.

Profiles give positionspecific scoring

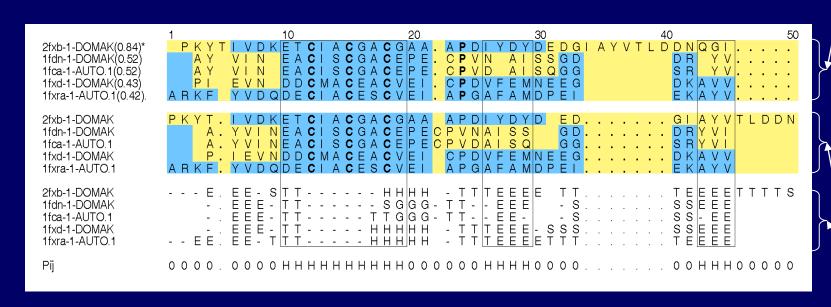



This emphasises position-specific features of the protein family

Compared to Gly-Gly score of 0.6 in the BLOSUM62 matrix.

When either A or B is a profile, the score comes from the profile rather than the BLOSUM matrix.

If A and B are both profiles, then the score is obtained by combining the scores from the two profiles (Exactly how is beyond this lecture)


How good are alignments?

Use of reference alignments to see how well sequence alignments work

- OXBench library of 672 multiple structure alignments
- Software to test how well different methods work

Raghava GP, Searle SM, Audley PC, Barber JD,
 Barton GJ. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy.
 BMC Bioinformatics. 2003 Oct 10;4:47.

Comparison of Structural sequence alignment to sequence alignment

Sequence alignment

Reference structural alignment

Boxed regions: STAMP reliably structurally aligned

BLUE highlighting: parts of the alignments that are the same. YELLOW highlighting: parts of the alignment that is different.

Secondary structure for reference alignment

Result of comparisons on alignments of 8 sequences or less

Grouped by percentage sequence identity (more on that later)

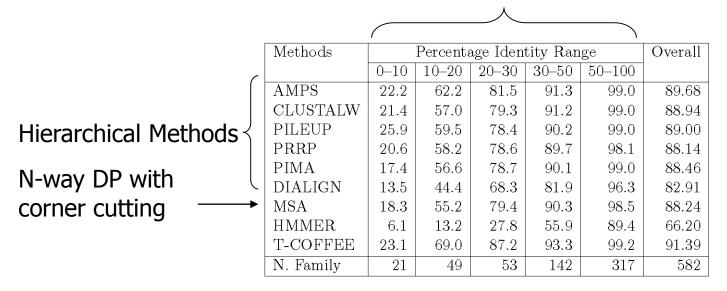
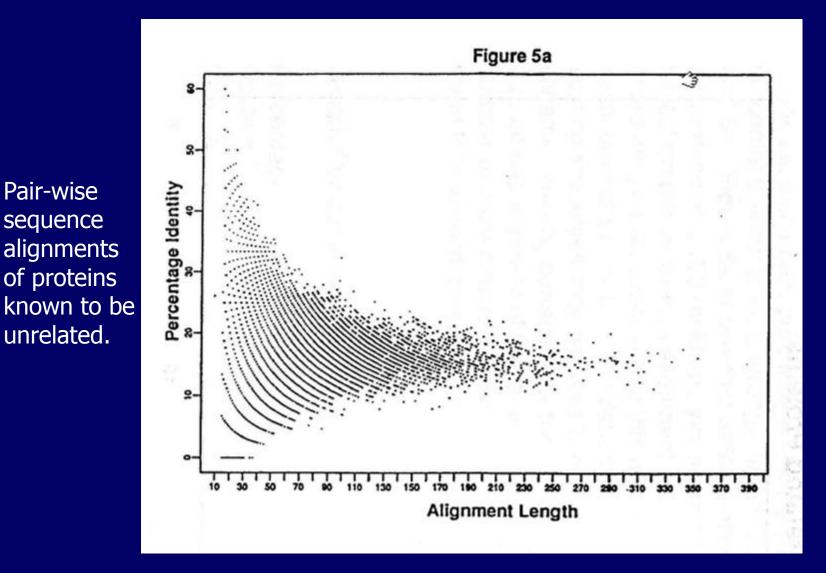



Table 10: The performance of methods on the MSA data set (families with ≤ 8 members.)

How similar do sequences need to be before we can align them reliably?

Percentage identity is strongly length dependent

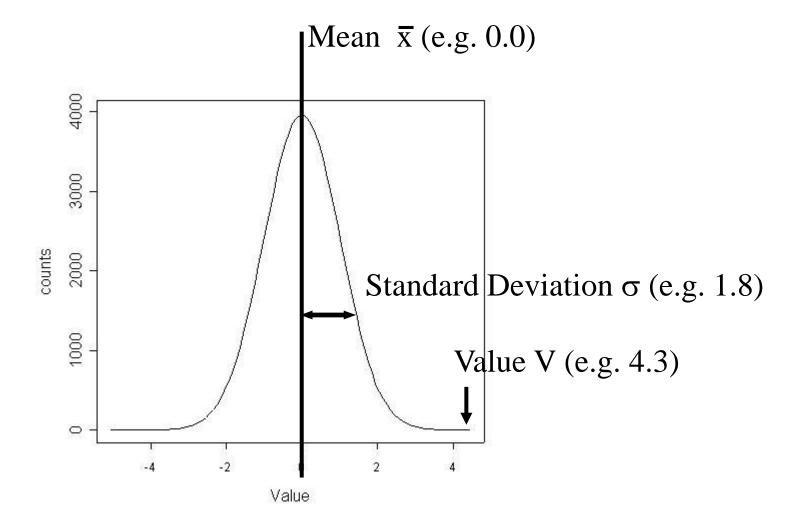
Pair-wise

sequence

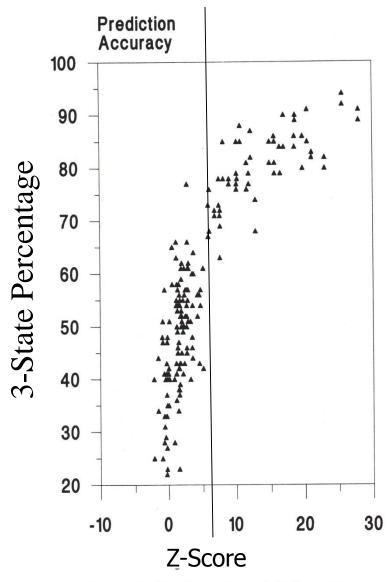
unrelated.

Barton, GJ, Proceedings of the CCP4 Study Weekend on Molecular Replacement (31 Jan-1 Feb, 1992) There is a more recent ref with similar figure in it by Burkhard Rost, but I must find it!

Problems with percentage identity


- Length-dependent
- Insensitive
- Dependent on the sequence alignment program and parameters
- Is a family of different scores...
 - Divide by length of shortest sequence
 - Divide by length of alignment
 - Divide by number of aligned positions etc.
 - See: Raghava, G.P.S. and Barton, G. J. Quantification of the variation in percentage identity for protein sequence alignments. BMC Bioinformatics. 2006 Sep 19;7:415.

Z-score compared to percentage identity


- Corrects for alignment length
- Is as sensitive as the alignment method
- Less sensitive to changes in the alignment method
- Only one way to calculate it

Z-score

- Align sequences and record score S.
- Shuffle order of amino acids in the sequences and re-align the pair. Record the score for this alignment, repeat 100 times.
- Calculate mean and Standard Deviation (sd) of shuffled sequence comparison scores.
- Z= (S-mean)/sd

Z-score = (Value – Mean)/(Standard Deviation)
=
$$(V - \overline{x}) / \sigma$$

e.g. = $(4.3-0.0)/1.8 = 2.39$

Alignment accuracy judged by agreement of secondary structure

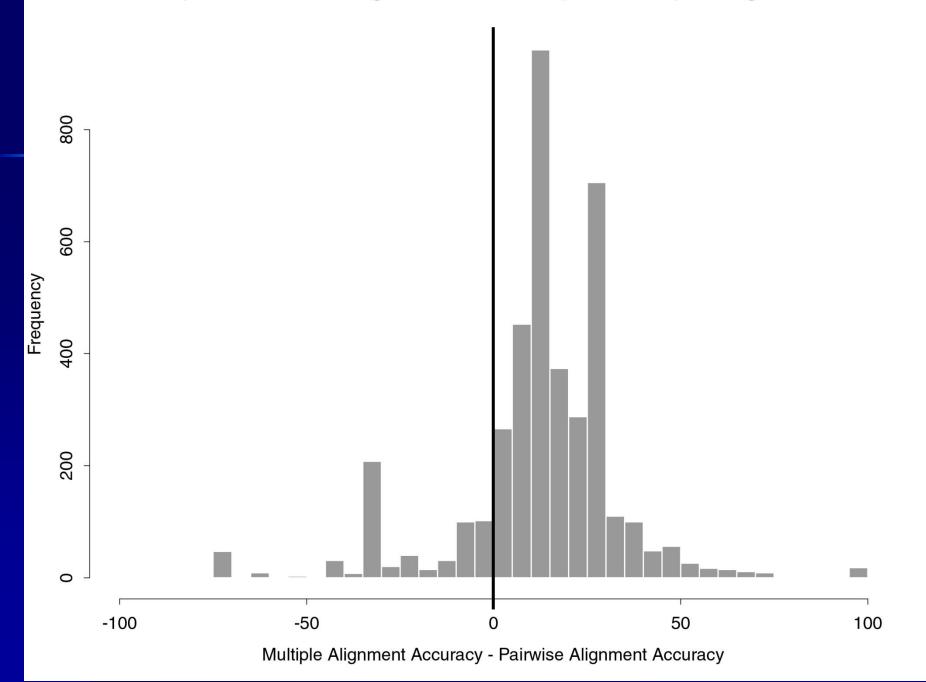
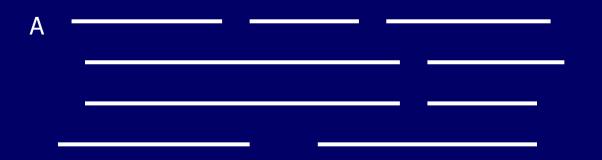

No poor alignments for similarity > 6 sigma.

Fig. 2. The accuracy of secondary structure prediction by sequence alignment plotted against the alignment SD score to the homologous protein. One hundred and eighty-two predictions were made from pairwise alignment of the proteins in Table I.

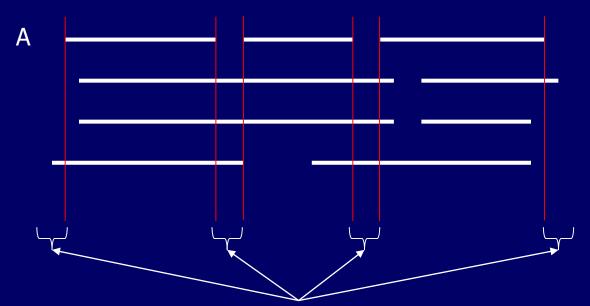
Boscott, P. E., Barton, G. J. and Richards, W. G. (1993), *Prot. Eng.*, **6**, 261-266.

Alignment Accuracy Improves on Multiple Alignment

Improvement in Alignment Accuracy on Multiple Alignment



So, multiple alignments are on average more accurate than pair-wise alignments


Multiple alignments for different purposes

- Obtain best "full" alignment of N sequences.
 - Good starting point for most purposes.
- Obtain best alignment relative to one sequence
 - Best when subsequent analysis is focused on the first sequence.
 - Best approach for iterative profile searching since it prevents the alignment length growing longer than the sequence.

Multiple alignments for different purposes

Normal Hierarchical alignment: Gaps appear in the first sequence if needed

Alignment specific to sequence A.

Alignment relative to first sequence only:
Regions of second and subsequent sequences aligned with gaps in first Sequence are sometimes deleted. e.g. JPRED output. and some PSIBLAST output.

Regions deleted from alignment

Some uses of multiple Alignments

- Basis for sensitive profile searching of databases
- Identification of functional sites
- Phylogeny
- Presentation of sequence-related results
- Improved prediction of
 - Secondary structure
 - Disorder
 - Transmembrane regions
 - Almost any sequence-related property

Some uses of multiple Alignments

- Basis for sensitive profile searching of databases
- Identification of functional sites
- Phylogeny
- Presentation of sequence-related results
- Improved prediction of
 - Secondary structure
 - Disorder
 - Transmembrane regions
 - Almost any sequence-related property

Why are multiple alignments useful for prediction?

- Evolution highlights amino acids important to maintaining the structure and function of a protein
- This information can be captured by visual analysis, or better, by machine learning techniques such as Artificial Neural Networks.
- This is what Day 3 of this course is about!

Jalview — a tool with which to tackle many of these analyses

Also good for RNA and DNA

Jim Procter

Suzanne Duce

Mungo Carstairs

Tochukwu (Charles) Ofoegbu

www.jalview.org twitter:@jalview

First developed in 1996

Funding: BBSRC and Wellcome Trust until 2019

