NUCLEOTIDE SEQUENCES AND JALVIEW

DNA and Protein in Jalview

- Discussed in Section 2.10 of manual
 - From DNA to Protein
 - Calculations => Translate cDNA
 - View protein annotation on exons using EMBL (European Nucleotide Archive) records
 - From protein to DNA
 - Recover DNA for proteins using EMBL cross references
- Defer till later: New features Jalview 2.9!

Introduction to RNA structure

Slides from Yann Ponty VIZBI RNA Visualisation tutorial 2012 www.lix.polytechnique.fr/~ponty/talks/ VIZBI-2012-Tutorial-RNA.pptx

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary structure

Tertiary structure

Source: 5s rRNA (PDBID: 1K73:B)

RNA structure(s)

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary⁺ structure

Tertiary structure

Source: 5s rRNA (PDBID: 1K73:B)

How RNA folds

RNA folding = Hierarchical stochastic process driven by/ resulting in the pairing (hydrogen bonds) of a subset of its bases.

Non canonical interactions

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

Non canonical interactions

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

RNA nucleotides bind through edge/edge interactions.

Non canonical are weaker, but cluster into modules that are structurally constrained, evolutionarily conserved, and functionally essential.

Leontis/Westhof nomenclature: A visual grammar for tertiary motifs

+ Tools to infer base-pairs from experimentally-derived 3D models RNAView, MC-Annotate...

Jalview 2.8 and RNA 2nd-ary

RNA 2nd-ary Structure Prediction

ViennaRNA	
Alignment	Net Secondary Structure Prediction
Protein Disorder Analysis Conservation Fetch DB References	http://www.compbio.dundee.ac.uk/jabaws RNAAliFold Prediction Change RNAAliFold settings
- CCUUUGU UAAGGGU UUG CUAUGA- CCUAG- G	Modify settings for the RNAAliFold prediction. Use this to hide or show different results of the RNA calculation, and change RNA folding parameters

RNAAliFold: A Consensus Method

- Quick
- Predictions update when alignment changes
- settings & results saved in Jalview project

Protein Disorder	 http://www.compbio.dundee.ac.uk/jabaws ✓ RNAAliFold Prediction Change RNAAliFold settings 								
Fetch DB References	JPred Conse Change JPre	d prediction. Use this to hide NA calculation, and change							
-117.1111111-117.1247 = 0.0 = = = = -0.0000000000000000000000	MEA Structur	uence							
	No Closing GU								
	🗌 No GU	No LP							
	🗌 old	Endgaps	Circular						
When 'partition function' enabled, the contact	🗌 d2	G-Quadruplex							
	 Partition Function Ribosum Scoring 								
- Pa	arameters								
	Temperature + bppmThreshol	42 Id 	.222						

Tooltips provide additional RNAAliFold information

G - UUACAUU - - GAUGAGAACAGAAACA - UAAA - - CUAUG R.norvegicus.2/1-64 A - UAUUUGUU - UAUGAUGGUCACAGUG - UAAA - - GUUCA R.norvegicus.1/1-61 G - ACGCUUC - - - AUGACAGGAAGGACU - GAAA - UGUCUC O.aries.1/1-68 Consensus G-UUUCAUUUU+AUGACGGCCUGUGCUCUAAA-CCCU+C RNAalifold Consensus G_UUUCAUU___AUGACGGCCUGUGCU_UAAA__CCUCC **MFE Structure** Contact Probabilities 8->91: 50.1% | 8->59: 32.7% | 8->19: 10.4% | Centroid Structure

Sequence position 8 8->91: 50.1% | 8->59: 32.7% | 8->19: 10.4%

"2.5D" RNA structure RNAView, pyRNA

- Fabrice Jossinet's pyRNA server includes RNAView*
 - Identify and characterise base pair interactions in 3D structure
- Used by Jalview to obtain secondary structure for RNA 3D data

PD PDB 2GIS 2GIS A/1-96 Sec. str.	1	G (G (C (U (U (A (U (с (A	A	G (A (G (A	14
PDB 2GIS 2GIS A/1-96 1 Sec. str.	15	G (G (U (G (G (A (G (G (G (A	с <	U <	G <	G)	21
PDB 2GIS 2GIS A/1-96 2 Sec. str.	29	с	c)	C)	G	A	U	G)	A)	A)	A)	C)	C)	C)	G (4:
PDB 2GIS 2GIS A/1-96 4 Sec. str.	43	G)	C)	A	A	C (C (A (G (A	A	A)	U)	G)	G)	5(
PDB 2GIS 2GIS A/1-96 Sec. str.	57	U (G	с	C)	A	A	U	U (с	C >	U >	G >	C (A (7(
PDB 2GIS 2GIS A/1-96 7 Sec. str.	71	G (C (G (G (A	A	A)	C)	G)	U)	U)	G)	A	A	84
PDB 2GIS 2GIS A/1-96 8 Sec. str.	85	A)	G)	A)	U)	G)	A)	G)	C)	C)	A	a)				9!

* RNAView will shortly be replaced by **DSSR** (Xiang-Jun Lu) http://x3dna.org/index.php

Exercise 33

- Viewing RNA structures
 - RFAM alignment
 - Colour by helices
 - Apply RNAAliFold
 - View 3D structure and 2.5D structure

Protein Feature visualization on DNA Section 2.10, exercise 33

- Task
 - Retrieve a DNA contig and visualize features from UNIPROT at their coding positions.
- Question
 - What fields in an EMBL sequence record can Jalview use ?

Semantic Processing: Database Reference Tracing

'get me the sequences from database **blah** for the selected sequences'

Supplementary exercises

cDNA and Protein splitframe

Day 1

9.30-9.40am. Overview of the Course

Session 1: Introduction to Jalview

- starting the application, importing and exporting alignments and sequence data

Coffee: 10.30am - 11am

Session 1: Continues

- Selection, colouring, basic editing and creating figures.

12.30pm to 1.30pm. Lunch

1.45pm to 2.30pm Geoff Barton – Multiple alignment and analysis

Session 2: Creating, editing and analysing alignments.

- Jalview alignment methods
- Creating sequence alignments

Coffee: 3.30pm – 4pm

Session 3: Alignment and analysis

- importing and calculating trees and PCA
- Tree based alignment analysis
- working with group associated alignment annotation.

5.15pm – 5.30pm: Wrap up and plan for tomorrow

Day 2

9.30am.- 9.40am Where did we get to ?

Session 4 Annotating sequences and alignments

- Database references, sequence features and DAS

Coffee: 10.30am - 11am

Talk from Geoff: A quick intro to protein structure

Session 5: Working with Structures

- Jmol and Chimera: Viewing 3D structures and superposing them using the alignment
- Alignment annotation tracks from PDB data

Session 6: Disorder prediction

- Protein disorder prediction

Lunch: 12.30am-1.30pm

Session 7: RNA, cDNA and Jalview

- Viewing RNA structure & Predicting RNA structure in VARNA and RNAAliFold
- cDNA from the European Nucleotide Archive
- Aligning by protein and nucelotide

Coffee: 3.30pm – 4pm

Session 8: Jalview clinic

Desktop Structure Visualization 3D structures and 2D RNA diagrams

http://jmol.sourceforge.net/

VARNA Visual Analysis of RNA

http://varna.lri.fr/

