Practical Jalview

Jim Procter University of Dundee 24th October 2014

supported by wellcometrust BBSRC

9.00-9.15am.

Overview of the day

9.15am - 10.30am. Session 1. Introduction to Jalview

- starting the application, importing alignments, basic editing and creating figures.

10.30-11am.

Coffee

11am - 12.30pm. Session 2: Alignment & alignment analysis

 Creating sequence alignments, importing and calculating trees, tree based alignment analysis

12.30pm to 1.30pm. Lunch

1.30pm – 3.00pm. Session 3: Annotating sequences & alignments

- Creating and viewing sequence annotation
- Protein Secondary structure prediction

3.00pm – 3.30pm Coffee

3.30pm – 4.30pm. Session 4: Working with molecular structures

- Viewing 3D Structures, superimpositions, mapping disorder and alignment quality
- Viewing RNA Secondary Structure

4.30pm – 4.45pm. Wrapup – what we didn't cover today

Course materials

Everything (will be) online

http://www.jalview.org/tutorial/trainingmaterials/2014/Dundee/Oct/

– These slides

- Jalview v2.8 Manual (v1.4.1)
 - Log in and
 - Open the manual in your PDF Viewer NOW

– Additional exercises + 'advanced topics'

Clerk/RPLDK/ 2016 uniprot non_terminal_residue 10 2016 and 201	FASTA HC class	II antigen	
HNNTGVGESFTVQR 0.0 28MG29/1-1-89 MHC class III 28MG29/1-1-89 MHC class III 28HWS7/1-89 MHC class III 20167/1-89 MHC class III 20167/1-89<		095TE6 uniprot non terminal residue 88 88 0.	0 .
12MG29/1-89 MHC Class II 09M299 MHC 00M299 MHC	YCRHNYGVGESFIVQR-	08MGZ9 uniprot non_terminal_residue 1 1 0.	ŏ.
- CROCKFECHFFNGTERVRYLHRG 08HWS7-Win1prot mon_terminal_residue X1 (DFLER 1AEVD10.0 - RHNYGVGESFTVQRR 08HWS7-Win1prot mature_protein_region_500_TLE0_266_AVD10.0 - QODKYECHFFNGTERVRFLHRD 030167_Uniprot extramembrane 228 250 0.0 - QODKYECHFFNGTERVRLLRR 030167_Uniprot extramembrane 228 250 0.0 - QODKYECHFFNGTERVRLLRR 030167_Uniprot extramembrane 251 266 0.0 - LEEVKFECHFFNGTERVRLLERR 030167_Uniprot polypertide region - QODKYECHFFNGTERVRLLERR 030167_Uniprot polypertide region - QODKYECHFFNGTERVQFL - QODKYECHFNG	>Q8MGZ9/I-89 MHC class	<u>1 08MGZ9 ^eUniprot non_terminal_residue89890.</u>	ο.
CRHNYGVGESFTVQRR 08HWS7 uniprot non_terminal_residue 89 89 0.0 QBHWS7/1-89 MHC class 11 030167 uniprot signal_peptide 1 29 0.0 CQDKYCCHFFNGTERVRFLHRD 030167 uniprot mainprot signal_peptide 1 29 0.0 CQDKYCCHFFNGTERVRFLHRD 030167 uniprot extramembrane 222 0.0 GFF Q30167/1-89 MHC class 11 030167 uniprot extramembrane 251 266 0.0 GFF Q30167/1-89 MHC class 10 30 124 0.0 CRHNYGVGESFTVQRR 030167 uniprot polypestide deata signal end 30 124 0.0 Q951E2/1-89 MHC class 10 125 227 0.0 48 602 Q951E2/10.0 033592 MHC class 100 108 21.562 67.120 108 Q951E5:0.233569 328526 7.89668 Atom 15 CD 44<	RFLKQDKFECHFFNGTERVRYL	HKGQ8HW\$7=NWhiprotVhon_terminal_HesAduevNSQKDFLERMRAEVDIQ.	o.
28HWS7/1-89 MHC class II 03446/jumprot signal_peptide 1 29 0.0 LQQDKYECHFFNGTERVRFLHRD 20167 uniprot extramembrane 228 250 0.0 20167/1-89 MHC class II 030167 uniprot extramembrane 228 250 0.0 GFF 20167/1-89 MHC class III 030167 uniprot extramembrane 228 250 0.0 GFF 20167/1-89 MHC class III 030167 uniprot extramembrane 251 266 0.0 2951E2/1-89 MHC class 100167 uniprot polypeptide_domain 125 227 0.0 2951E2/1-89 MHC class 11 126 227 0.0 125 227 0.0 2951E2/1-89 MHC class 12 125 227 0.0 125 226 0.0 2951E2/1-89 MHC class 100167 uniprot polypeptide region 125 226 0.0 951E2/1-80 MHC class 13 13 13 145 0.0 200167 11 26 23 60 0.0 125 227 0.0 951E2/1-80 0.0 14 14	VCRHNYGVGESFTVQRR	Q8HWS7 uniprot non_terminal_residue 89 89 0.	ο.
LQQDKYECHFFNGTERVRFLHRD 030167 uniprot wattramembrane 228 250 0.0 GFF 030167 030167 uniprot extramembrane 251 266 0.0 0 125 227 0.0 030167 uniprot extramembrane 251 266 0.0 0 126 127 0.0 030167 uniprot extramembrane 251 266 0.0 127 0.0 030167 uniprot extramembrane 251 266 0.0 030167 01167 uniprot polypeptide region 30 124 0.0 030167 030167 uniprot polypeptide region 30 125 227 0.0 030167 030167 030167 030167 uniprot polypeptide region 30 126 207 62 60 0.0 950167 0.023547 0.0 0.0 15.483 146 202 15.483 146 22.323 65.263 0.0 10.0.0 2030167	>Q8HWS771-89 MHC class	IIQ30167 uniprot signal_peptide 1 29 0.0 1	· ·
CRHNYGVGESFTVQRR Class III Class IIII Class III Class IIII Class IIIIIIIIII Class IIIIIIIIIIIIIIIIII	RFLQQDKYECHFFNGTERVRFL	HRD K3M497ED URTHINGS VINTEURES PROCEST POSTAINS CRAILEO & R& AVD TY -	υ.
230167/1-89 MHC class II 030167: uniprot extramembrane 251 266 0.0 LEEVKFECHFFNGTERVRLLERR 030167: uniprot volypeptide domain vols 126 LER 216 AVD 1.0 30167 30167 LEEVKFECHFFNGTERVQR 030167: uniprot volypeptide region 30 30 124 0.0 Q951E2/1-89 MHC class II Bioinformatics 30 125 227 0.0 Q951E2/1-89 MHC class II Bioinformatics 30 125 227 0.0 Q951E2/1-89 MHC class II Bioinformatics 30 125 227 0.0 Q951E2/1-89 MHC class II Bioinformatics 30 126 20 125 27 0.0 Q951E2/1-89 MHC class II Bioinformatics 30 125 227 0.0 Q951E5:0.039176) Cata is not fun to 16.9429 PDB 20.419 PDB 20.0123569 568.7.89668.7.400 147 CB GLU A 42 23.35 67.420 11.548 21.00.029464) Newick S7.142857, 100 ATOM 17 15.96 GLU A 42 23.35 68.587 7.581 28MGZ9:0.11	YCRHNYGVGESFTVQRR	030167 uniprot transmembrane 228 250 0.0	GEE
LEEVKFECHFFNGTERVRLLERR 030167 uniprot polypeptide domain VNS 126 LER 216 AVDT0.0 RHNYGVGESFTVQRR 2951E2/1-89 MHC class LWQGKYKCHFFNGTERVQFI GUIDANT CLASS 2951E2:0.309176) 9:0.023547, 030167:0.111764) :0.0, (0951E6:0.058815) :0.029464) Newick 15:0.090944, Newick 08MGZ9:0.1110844) :0.0, 08MGZ9:0.1110844) :0.0, 08MGZ9:0.1110844) :0.0, 08MGZ9:0.1110844) :0.0, 0000, 1000,	>Q30167/1-89 MHC class	II 0301673 CUniprot extramembrane 251 266 0.0	GII
CRHNYGVGESFTVQRR 030167 uniprot polypentide region 30 124 0.0 0951E2/1-89 MHC class Bioinformatics 48 0.0 ((((0951F1:0.033) 0951E2:0.309176) 0.0 16.942 16.942 16.942 030167:0.11764) :0.0, (0951E6:0.058815) 28526, 7.89668, 4100 14.788 15.62 0.124 0.0 0951E5:0.233569) 328526, 7.89668, 7.4400 14.788 15.62 0.1420 11.122 0951E5:0.233569) 328526, 7.89668, 7.4400 14.788 15.62 0.1420 11.126 21.0029464) Newick CSV ATOM 15.00 68.917 8.771 08MGZ9:0.1110844) .57.142857, 100 ATOM 19 HIS A 50 18.443 68.77 19.917 68.535 14.100 08MGZ9:0.11108444) .57.142857, 100 ATOM 19 HIS A 50 20.544 69.961 14.340 100.0, 100.0, 100.0, 100.0, 100.4 .468 .22.046 69.961 14.340 20.044 22.054 69.961 14.340 11.1.22 .57.142857, 100	RFLEEVKFECHFFNGTERVRLL	ERR Q30167EYuniprotivpolypeptide_domaanEYWNSQ126LLER1216.AVDT0.	ο.
2951E2/1-89 MHC class II Bioinformatics 125 227 0.0 48 48 0.0 2951E2:0.309176) 0.00 0.0 0.0 9:0.023547, 0.00 0.0 16.423 146 202 0.00, 0.00 15.433 0.0 0.0 0.0 0.00, 0.00 11.764) 0.0 15.432 0.0 0.00, 0.00 0.0 14.682 0.0 15.432 0.0 0.00, 0.00 11.764) 0.0 15.432 0.0 15.432 0.0 0.00, 0.00 11.1764) 0.0 15.432 0.0 11.122 0.00, 0.00 10.00 10.476 0.0 11.122 11.122 0.00, 10.00, 10.476 10.476 10.476 10.476 0.00, 10.00, 10.00 10.00 10.476 10.476 10.476 0.00, 10.00, 100 10.00 10.00 10.00 10.476 10.476 10.476 0.00, 10.00,	YCRHNYGVGESFTVQRR	030167 uniprot polypeptide region 30 124 0.	o.
Lwogkykchfffngtervoff Bioinformatics ((((0951F1:0.033) 0951E2:0.309176) data is not fun to 9:0.023547, atom is not fun to 030167:0.11764) read (0951E6:0.058815, 328526, 7.89668, Atom 147 cB GULA 4 0951E5:0.233569) 328526, 7.89668, Atom 147 cB GULA 4 3:0.029464) Newick 15:0.090944, Newick 028HwS7:0.076228, 57.142857, 100, 104 to 028MGZ9:0.11108444) 57.142857, 100, 104 to 028, 7.142857, 100, 100, 100, 100, 100, 100, 100, 10	>Q95IE2/1-89 MHC class	II 03016/18 uniprot polypeptide_region 125 227 0.	
((((Q951F1:0.033)) (RFLWQGKYKCHFFNGTERVQFL		0. 8. 0
0951E2:0.309176) 0.0023547, 030167:0.11764) 0.00167:0.11764) 0.00, (0951E6:0.058815), 0951E5:0.233569) 0.0028526, 328526, 0.0029464) 0.00167:0.11764) 02951E5:0.233569) 0.002868, 068, 07.89668, 01.100, 0.0029464) 0.0029464) Newick 057.142857, 0.076228, 08HWS7:0.076228, 07.57.142857, 00.0, 0.000,		Ref Diominormation conducts 146 20	žŏ
0931E2:0.3091767 0.00 0.023547 0.00 15.483 16.942 0.00 030167:0.11764) 0.00 0.00 0.00 16.942 0.00 16.942 0.00 02951E6:0.058815 0.058815 0.029464) 0.029464) 0.029464) 0.029464 0.029464 0.00 0.0		1 - 24 (py 000, 7.09000, 1.1095077, 5.301975, 0.923) 1 - 236 236 0.	ō.
9:0.023547, 030167:0.11764) :0.0, (095IE6:0.058815, 3:0.029464) 15:0.090944, 08HWS7:0.076228, 08HWS7:0.076228, 29,71.42857,100.0,1	ΥRAPTE₹:Λ° υΛΑΤιρ`	data is not tun to 232LLEOR62AVDT	ļ.
Q30167:0.11764) :0.0, (Q95IE6:0.0588815, Q95IE5:0.233569) 3:0.029464) Rewick Q8HWS7:0.076228, Q8HWS7:0.0776228, Q8HWS7:0.076228, Q8HWS7:0.0776228, Q8HWS7:0.0776228,	/9:0:023547 6244, 6.77		<u> </u>
:0.0, (Q95IE6:0.058815, 28526, 7.89668, 4tom 14 CB GLU A 4 21.513 67.458 12.588 22.169 67.189 13.445 22.323 68.269 10.476 23.588 67.860 9.745 24.007 68.917 8.715 3:0.029464) 15:0.090944, 15:0.090944, 15:0.090944, 24.007 68.917 8.715 2857, 142857, 100 4tom 18 022 GLU A 4 24.001 70.103 9.183 4tom 18 022 GLU A 4 24.001 70.103 9.183 20.214 68.139 12.857 19.917 68.535 14.210 18.443 68.716 14.290 10.0, 100.0, 100.0, 10 4tom 22 0 0.85.71429, 100 4tom 22 0 0.85.71	030167:0.11764)	.89668;27,89668,07,89(ATOM 7,8996:QE276LUGA8,8799-16.9429	DB
(Q95IE6:0.058815, 5577785, 6.377766, 12, 12, 12, 22, 16, 67, 18, 12, 58, 22, 16, 67, 18, 13, 445, 22, 23, 68, 26, 10, 476, 23, 25, 10, 476, 14, 28, 61, 44, 44, 22, 23, 23, 68, 26, 10, 476, 15, 20, 23, 25, 26, 7, 89, 66, 7, 89, 66, 7, 15, 26, 61, 44, 44, 44, 44, 44, 44, 44, 44, 44, 4	\cdot		LL.LJZ
Q951E6:0.0588815, 328526, 7.89668, ATOM 147 CB GLU A 4 22.169 67.189 13.445 Q951E5:0.233569) 688, 7.89668, 7.4TOM 15 CG GLU A 4 24.007 68.917 8.771 3:0.029464) Newick 688, 7.89668, 7.4TOM 16 CD GLU A 4 24.007 68.917 8.771 15:0.090944, Newick 67.142857, 100 ATOM 16 CD GLU A 4 24.007 68.917 8.771 Q8HWS7:0.076228, 57.142857, 100 ATOM 18 02 CA HIS A 5 20.544 68.988 13.272 Q8MGZ9:0.11108444) 100.0, 100.0, 100.0, 100 ATOM 22 0 HIS A 5 20.544 69.894 14.540 29, 71.42857, 100.0, 100.0, 100.0, 4TOM 23 CB HIS A 5 20.544 69.894 14.540 29, 71.42857, 100.0, 100.0, 100.0, 4TOM 24 CG HIS A 5 20.544 69.894 14.540 29, 71.42857, 100.0, 100.0, 100.0, 4TOM 25 ND1 HIS A 5 22.039 <		21.313 67.458 1	L2.588
Q95IE5: 0.233569) 3:0.029464) 15:0.090944, Newick 08HWS7: 0.076228, 08MGZ9: 0.110844) 29,71.42857, 1000, 100.0, 100	(QA21E0:0.0288T2.	5.0828526. 7.89668. Atom9668147. AB6680 A. 84668 27 323 68 269	L3.445 IO 476
3:0.029464) 15:0.090944, Newick 08HWS7:0.076228, 0.1100844) 29,71.42857,1000,0,100.0,	Q95IE5:0.233569)	7.89568.7.89668.7.24TOM8,7159663,GEU80664,7 23.588 67.860	9.745
15:0.090944, Newick 15:0.090944, Newick 08HwS7:0.076228, 100, 57.142857, 100 08HwS7:0.110844) 0.08MGZ9:0.110844) 100.0, 100.0, 100.0, 100 100.0, 100 100 100 100 100 100 100 100	3.0 029464)	ATOM 16 CD GLU A 4 24.007 68.917	8.771
LS:0.090944, Q8HWS7:0.076228, 100, 57.142857, 100 ATOM 19 N HIS A 5 20.214 68.139 12.857 Q8HWS7:0.076228, 142 57, 57.142857, 1470M 20 CA HIS A 5 19.917 68.535 14.210 Q8MGZ9:0.1110844, 1429, 100.0, 100.0, 10 ATOM 22, 00 HIS A 5 17.776 68.988 13.272 0, 85.71429, 100 ATOM 22, 00 HIS A 5 20.544 69.894 14.540 100, 100, 57 142857, 71.42857, ATOM 24 CG HIS A 5 22.039 69.961 14.340 29, 71.42857, 100.0, 100.0, 100.0, ATOM 25 ND1 HIS A 5 22.946 69.677 15.344 100, 0, 100, 0, 100, 0, 100, 0, ATOM 25 CD2 HIS A 5 22.779 70.275 13.249	1 E. O. ODOD 11 Newi	CK ATOM 18 OE2 GLU A 4 24.001 70.103	7.581
Q8HWS7:0.076228; 142857, 57.142857, 1470M 200 CA HIS A 510 19.917 68.535 14.210 Q8MGZ9:0.1100844)1429 100.0, 100.0, 101ATOM 10022, 0.0 HIS A 0.50 17.776 68.988 13.272 42857 100 0, 00 0, 85.71429, 100 ATOM 10023 100 HIS A 0.51 20.544 69.894 14.540 100 0, 100 0, 57 142857, 71.42857, ATOM 24 CG 5HIS A 1528 22.039 69.961 14.340 29, 71.42857, 100.0, 100.0, 100.0, ATOM 125 ND1 HIS A 150 22.946 69.677 15.344 100.0, 100.0, 100.0, 100.0, ATOM 125 ND1 HIS A 150 22.946 69.677 15.344 100.0, 100.0, 100.0, 100.0, ATOM 25 CD2 HIS A 5 22.779 70.275 13.249	15:0.090944,	100 0 57 142857 100 ATOM 197 N 57 HIS A 7 5428 20.214 68.139 1	L2.857
Q8MGZ9: 0 100844)1429, 100.0, 100.0, 10(ATOM 10022, 000HTS A0050, 17.776 68.988 13.272 42857, 100 0, 100 0, 85.71429, 100 ATOM 00 23 CB HIS A0 5, 20.544 69.894 14.540 100 0, 100 0, 57.142857, 71.42857, ATOM 0, 24 4CG HIS A 1528 22.039 69.961 14.340 29, 71.42857, 100.0, 100.0, 100.0, ATOM 125 ND1 HIS A 150 22.946 69.677 15.344 100.0, 100.0, 100.0, 100.0, 100.0, ATOM 125 ND1 HIS A 150 22.946 69.677 15.344 100.0, 100.0, 100.0, 100.0, ATOM 125 ND1 HIS A 150 22.946 69.677 15.344	Q&HWS7:0.076228,	142857. 57.142857. 100 ATOM 85211429 HT80A 0 5100 18 443 68 716 1	L4.210 L4 290
42857, 100.0, 100 0, 85.71429, 100 ATOM100 23 1CB) HIS A 0.5, 1 20.544 69.894 14.540 100.0, 100.0, 57.142857, 71.42857, ATOM 0, 24 CG 5 HIS A 1528 22.039 69.961 14.340 29, 71.42857, 100.0, 100.0, 100.0, ATOM 125 ND1 HIS A 150 22.946 69.677 15.344 100.0, 100.0, 100.0, 100.0, ATOM 285726 CD2 HIS A 5 22.779 70.275 13.249	08MGZ9:0.110.0844)1	429, 100.0, 100.0, 10 ATOM 10022, 0.00 HTS 20050, 17.776 68.988 1	13.272
100.0 100.0 57.142857 71.42857 ATOM 24 20.5 HIS A 1528 22.039 69.961 14.340 29, 71.42857, 100.0 100.0 100.0 14000 125 ND1 HIS A 150.0 22.946 69.677 15.344 100.0 100.0 100.0 100.0 14000 125 ND1 HIS A 150.0 22.946 69.677 15.344 100.0 100.0 100.0 100.0 100.0 140000 125 ND1 HIS A 150.0 22.779 70.275 13.249	.42857, 100.0,	100 D, 85.71429, 100 ATOM100 23 ICB HIS1A00 5, 1 20.544 69.894 1	L4.540
100.0, 10	100.0, 100.0,	57 142857, 71.42857, AIQM 0, 24 4035HIS A 15289 22.039 69.961 1	L4.340 5.344
Consensus B 100% E 100% I 100% E 440% O 56% VET HIS A 5 1 24.176 69.800 14.882	29, 71.42057,	100 0 100 0 100 0 ATOM 25 26 CD2 HIS A 5 22.779 70.275 1	L3.249

Allen month C class II antigen	
File REIN TAVIAT STITUT Require Web Service Q95IE6 uniprot non_terminal_residue 88 88	0.0 .
SORMEZQ/1_2Q MUC close if Q8MGZ9 uniprot non_terminal_residue 1 1	120 0.0 130 .
<pre>%QOMG2.97 IT07 MILL C1d55 II108MG29 Uniprot non_terminal_residue 89 89</pre>	0.0 .
KELKUUKEELHEENGIEKYKYLHKGQ8HWS7-Nuniprot/hon_terminal_Hesidue/NSUKUELEKIKAL	EVUT0.0 .
<pre>///WORHNYGVGESFTVQRR == vs == 08HWS7 == uniprot non_terminal_residue 89 89</pre>	0.0
>08HWS7/1-89 MHC class II Q30167 euniprot signal_peptide 1 29 0.0	
RETOODKYECHEENGTERVRETHRD 230367 DUDIPTOS MASURE-PROTEIN-DEPIONS 3911 FO 369	WDT ^{0.0}
Q30167 uniprot extramembrane 30 227 0.0	30 PH PO S I E V RWF R NGQ
Q30167 uniprot transmembrane 228 250 0.0	
>QB016//1=09 MHC CTASS II Q30167 Uniprot extramembrane 251 266 0.	Features
RFLEEVKFECHFFNGTERVRELERR\030167EY4niprot/polypeptide_domainYwNSC126LLERR1	
Q30167 uniprot polypeptide_region 30 12-	9.9
Appropriate HC class II 030167 uniprot polypeptide_region 125 227	0.0 .
ATTIOUALION CTERVOELER 83016 EMPTRIST ALXORY LATER DESIGNERING 48 THE 48 CO	
WEREMYERE ESTRICE Q30167 Uniprot disulfide crosslinked residues 44	108 0
WUNDN 19/95 201 10 00 10 10 10 10 10 10 10 10 10 10 1	202 0
	0.0
RFLWQLKFEC 7.89668, 7.89668, 7.0474243, 5.8615184, 7.89668, 5.130449, 74LLEOR	
YCRHNYGVGE 5.666244, 6.774655, 7.89668, 7.8966 TOM 89668 OE1 GLU A 36 2 15.48	tructure
16.94 • 16.94 • 16.94 • 16.94 • 16.94	ti uctui c
7.89668, 7.89668, 7.89668, 7.89668, 7.89668, 7.89666 ATOM 896 10 N SGEU A 74896 20.419	7 120 11 137
UUU, 7.89668, 5.578673, 7.89668, 7.89661 CO GLU A 4 2 21.313 6	7.458 12.588
COGSTER 7,89668, 27,89668, 5,5171785, 6,337 ATOM 13 0 GLU A 4 22,169 6	7.189 13.445
COLT - 2668, 6-69381/6, 5.0328526, 7.89668, ATOM966614/ CB/0GLU A 64666 22.323 6	8.269 10.476
UYDIED: 9668 77.89668, 7.89668, 7.89668, 7.4TOMS / 1596CG GLUAR664 / 23.588 6	7.860 9.745 9.017 9.771
RIOM 16 CD GLUA 4 24.007 6	0.91/ 0.771
ATOM 18 OE2 GLU A 4 24.293 6	8.587 7.581
MIN 100 1429, 100.0, 100.0, 100.0, 100.0, ATOM 19 N HIS A 5 20.214 6	8.139 12.857
ATOM 20 CA HIS A 5 19.917 6	8.535 14.210
Tree $0.0, 100, 0.57, 142037, 37, 142037, 1470M 21 C HIS A 5 18,443 6$	8./16 14.290
47857 100 0 100 0 85 71479° 100 ATOM 10 23 CR HTS A0 5 17.776 6	9.900 ID.272 9.894 14 540
100 0 100 0 57 142857 71 42857 ATOM 24 CG HIS A 5 22.039 6	9.961 14.340
29 71 47857 100 0 100 0 100 0 ATOM 25 ND1 HIS A 5 22.946 6	9.677 15.344
100 0 100 0 100 0 100 0 100 0 ATOM 26 CD2 HIS A 5 22.779 7	0.275 13.249
Consensus R 100% E 100% I 100% E ATOM 27 CE1 HIS A 5 / 24.176 6	9.800 14.882
CONSENSUS A LOUR, E LOUR, E LOUR, E ATAM, O REPUTE A E $74.102.7$	

Jalview

Jalview Launch Buttons

Launch Jalview Applet

Launch Jalview Desktop

Jalview comes in two flavours

Launch Jalview Applet

Launch Jalview Desktop

Ex 1 – starting The Jalview Dekstop PAGE 7

Use the 'Latest Build of Current Release' via the development page

http://www.jalview.org/development/development-builds

Webstart launch link is

http://www.jalview.org/builds/release/webstart/jalview_2G.jnlp

Launching the jalview desktop

Do you want to help make Jalview better by enabling the collection of usage statistics with Google Analytics ?

(you can enable or disable usage tracking in the preferences)

MATYKYKLITPEGPOLEDCPDDYLLDHAERYGLELPYSCRAGSC

News from www.jalview.org

brought to you by JSwingReader (jswingreader.sourceforge.net)

💯 Jan 4, 2013 Jalview in 2012 and 2013

🕫 Nov 12, 2012 Jalview 2.8 release and the new look www.jalview.org

🕫 Oct 18, 2012 Registration now open for 3rd Jalview Residential Training Course and

🕫 Sep 22, 2011 Welcome to the Jalview Desktop news channel

ure icts

Jalview in 2012 and 2013

tion http://www.jalview.org/General/General-news/Jalview-in-2012-and-2013

2012 was quite a year here at jalview.org. A number of long running projects finally bore fruit with the launch of our new website and logo, and the release of <u>Jalview Version 2.8</u>. The November release of Jalview was the first to support <u>JABAWS 2</u>, which was launched in December 2011, and to include RNA visualization features developed by our 2010 and 2011 sus Google Summer of Code students: Lauren Lui and Jan Engelhart.

http://www.jalview.org/feeds/desktop/rss

stabace Estchare

Anatomy of Jalview: Figure 1.7

Ex 1 – starting Jalview

- Tasks
 - Modify user preferences
 - Test that you can load the example file manually

http://www.jalview.org/examples/exampleFile_2_7.jar

Ex 1 – starting Jalview

- Tasks
 - Modify user preferences
 - Test that you can load the example file manually

http://www.jalview.org/examples/exampleFile_2_7.jar

- Questions
 - Where to find help ?
 - How to report a bug ?

Jalview Community

- Mailing lists
 - Discussion forum and developers forum
 - Links from http://www.jalview.org/community
- Jalview bug database
 - http://issues.jalview.org
 - Also indexed on google
- Jalview development info
 - http://www.jalview.org/development

Ex 2 - Navigation

- Tasks
 - Open the overview window for a view
 - Jump to a specific row and column with keyboard mode

Ex 2 - Navigation

- Tasks
 - Open the overview window for a view
 - Jump to a specific row and column with keyboard mode
- Questions
 - How do you locate a sequence or sequence position if you don't know its row/column ?
 - How do you find a sequence motif?

Ex 3 Getting data into Jalview

- Tasks
 - Importing an alignment via a url, local file, or cut' n' paste
 - Getting an alignment from Pfam

Ex 3 Getting data into Jalview

- Tasks
 - Importing an alignment via a url, local file, or cut' n' paste
 - Getting an alignment from Pfam
- Questions
 - What happens when you drag a file onto an existing alignment ?
 - What is different about the alignment retrieved from Pfam ?
 - What if you want to load a *really* big alignment ?

Ex 4. Saving alignments

Tasks

- Save alignments in different formats

Ex 4. Saving alignments

Tasks

- Save alignments in different formats

- Questions
 - What's the biggest difference between a BLC file and a pileup file ?
 - Why are Jalview projects useful ?

Ex 5,6,7,8 and 9 selecting, reordering, hiding/showing and editing • Tasks

- Get used to the mouse and keyboard based selection and alignment editing controls
- Learn how to work on specific parts of an alignment

- Exercise 8 and 9 let you practice mouse and keyboard based editing techniques
 - If you don't finish them now, do them when you have a spare 15 mins at lunch.

How do I edit sequences in Jalview

http://www.jalview.org/examples/editing.html

http://www.jalview.org/examples/editing.html

F2 enables/disables keyboard mode

 10
 20
 30

 SeqA AT G - - - AGA - GT G - A - T - G - - GGG - - - AT ACAGA

 SeqB AT G - - - AGA - GT G - A - T G - - - GGG - - - ACACAGAGGA

 SeqC AT G - - - GT G - A - T G - - - GGGAT AGAGAGGA

 SeqD AT G

 SeqE AC G - - A

 AT G - - - GT G - A - T G - - - GGGAT AGAGAGGA

 SeqE AC G - - A

 AT G - - AGA - GT G - A T G - - - GGG - - - ACACAGAGGA

 SeqE AC G - - A

 AT G - - AGA - - GT G - A T G - - - GGG - - - ACACAGAGA

 SeqF AT G - - AGA - - GT G - - AT G - - - GGG - - - ACACAGAGA

 SeqF AT G - - AGA - - GT G - - AT G - - - GGG - - - ACACAGAC

Cursor Keys - Move Cursor Alt + Cursor Keys - Move Sequence [X] Space - Insert [X] gap(s) [X] Delete / Backspace - Delete [X] gap(s) 8 C - Move to Column 8 4 S - Move to Sequence 4 8,4<return> - Move to column 8, sequence 4 6 P - Move to Position 6 Q - Define the top left corner of selection area

Define the bottom right corner of selection area

Ex 5,6,7,8 and 9 selecting, reordering, hiding/showing and editing • Tasks

- Get used to the mouse and keyboard based selection and alignment editing controls
- Learn how to work on specific parts of an alignment
- Questions
 - Why would you create representative sequences ?
 - How do you insert a gap in the middle of a sequence without affecting the rest of its alignment ?

Ex 10 & 11 : Colouring

- Tasks
 - Learn how to colour all, or part of the alignment by
 - Amino acid property
 - Annotation

Ex 10 & 11 : Colouring

- Tasks
 - Learn how to colour all, or part of the alignment by
 - Amino acid property
 - Annotation
- Questions
 - Why is colouring the alignment useful ?
 - How would you highlight acidic residues in your alignment ?

Ex 12,13 – alignment layout and export

- Tasks
 - Adjust the alignment formatting options
 - Wrap
 - Sequence id margin
 - Export the alignment as a figure
 - HTML, EPS and PNG

Ex 12,13 – alignment layout and export

- Tasks
 - Adjust the alignment formatting options
 - Wrap
 - Sequence id margin
 - Export the alignment as a figure
 - HTML, EPS and PNG
- Questions
 - How do you control the number of columns shown in wrapped mode ?
 - How can you easily experiment with different alignment figure layouts ?
 - What programs can edit EPS files ?

- End of Session 1
 - Loading/saving
 - Navigation/Editing
 - Colouring & Figures
- Session 2
 - Alignment with JABAWS

PAGE 58 IN MANUAL

- Alignment analysis
 - Trees
 - PCA
 - Subfamily analysis

Anatomy of Jalview: Figure 1.7

www.compbio.dundee.ac.uk/jabaws

Jalview's Alignment Methods

Web Service

100	a second second			
	lini	1 m 1	en	
-			CII	
				وسور ومناقدا

Secondary Structure Prediction Protein Disorder Analysis Conservation Fetch DB References

SANTQ--SLFGLKS-GTAR

JABWS alignment services

- Preset aligment modes
- User defined settings
- Pairwise alignment
 - Needleman and Wunsch
 - Mostly used internally

	http://www.compbio.dundee.ac.uk/jabaws	
	Edit settings and run	
	Due Teeffee with meant	
	Run Tcoffee with preset	•
	Probcons with Defaults	
	Edit settings and run	
	Muscle with Defaults	
	Edit settings and run	
	Run Muscle with preset	۲
Ī	Mafft with Defaults	
	Edit settings and run	
	Run Mafft with preset	۲
	Clustal	
	Realign with Clustal	۲
	ClustalO	•
	Realign with ClustalO	

Common types of alignment algorithm

Figure adapted from

Procter et al. (2010) Nature Methods 7 S16 - S25

a. Sequence database searches – optimal alignment between query and hit

e.g. Blast (single sequence), PSI-Blast and HMMER

- b. Progressive optimise alignment between branches on guide tree e.g. **ClustalW**
- c. Transitive optimise MSA to maximise consistency between pairs e.g. **T-COFFEE, ProbCons**

Profile methods – e.g. Muscle and MAFFT are hybrid of **b** and **c**.

Latest methods, e.g. **ClustalO**, also employ sampling strategies to speed up tree building & refinement.
Jalview alignment exercise 25 (sect. 2.4)

- Tasks
 - Align sequences using different methods
 - Use the Webservices' 'alignment' submenu
 - Explore how hidden regions affect alignment jobs.

Jalview alignment exercise 25 (sect. 2.4)

- Tasks
 - Align sequences using different methods
 - Use the Webservices' 'alignment' submenu
 - Explore how hidden regions affect alignment jobs.
- Questions
 - Why does jalview run several jobs if the input includes hidden regions ?
 - What does 're-alignment' mean ?

LUNCH

Alignment Job Parameter Settings

Why change alignment parameters ?

Jaba Alignment Exercise

- Task
 - Run the alignment from step **b** of ex. 25 using the JABA clustalW service
 - 1. Run with default settings
 - 2. Use the 'Edit parameters' dialog to run an alignment with the following:
 - Gap opening (internal and end gaps) = 3
 - Gap Extension = 0.05
 - Compare the two alignments. You may want to save them for later, too.
- Questions
 - What effect has modifying the gap penalties had on the feredoxin alignment ?

- Session 2
 - Alignment with JABAWS

PAGE 58 IN MANUAL

- Alignment analysis
 - Trees
 - PCA
 - Subfamily analysis

Alignment analysis – Section 2.2

- Principal component analysis
- Phylogenetic trees
- Redundancy removal
- Tree based conservation analysis
- Subdividing alignment by mutation

Phylogenetic analysis and Jalview

- Built in tree methods
 - UPGMA
 - Fast, simple, but not reliable for phylogenetic inferrence
 - Neighbour joining
 - Slower than UPGMA
 - Useful for a first approximation
 - NJ does not work well for very divergent sequence sets
 - » Need to add in close relatives to get an idea of topology
- Import trees from elsewhere
 - Load a Newick format tree file onto an alignment from another program

PCA and Phylogeny Section 2.2 Exercise 17 and 18

- Tasks
 - Calculate Principal component analyses (PCAs) and trees on the feredoxin alignment
 - Explore the use of the interactive tree viewer
 - Use it to select subgroups on the alignment.

PCA and Phylogeny Section 2.2 Exercise 17 and 18

- Tasks
 - Calculate Principal component analyses (PCAs) and trees on the feredoxin alignment
 - Explore the use of the interactive tree viewer
 - Use it to select subgroups on the alignment.
- Questions
 - What is the role of BLOSUM62 or Percentage identity in the tree building process ?

Tree based conservation analysis Sect. 2.2.3 Exercise 19

- "Poor man's" character inference analysis
 - Compare conservation patterns within and between branches of a tree
- Task
 - Use interactive tree viewer to subdivide alignment and identify difference in conservation pattern

Tree based conservation analysis Sect. 2.2.3 Exercise 19

- "Poor man's" character inference analysis
 - Compare conservation patterns within and between branches of a tree
- Task
 - Use interactive tree viewer to subdivide alignment and identify difference in conservation pattern
- Questions
 - How can you tell which differences are important ?

Sub-groups and Sub-group Annotation Exercise 21

- Task
 - Use the group consensus sequence logos to more easily compare tree subgroups
 - Use 'Make groups for selection' to subdivide groups by specific mutation

Sub-groups and Sub-group Annotation Exercise 21

- Task
 - Use the group consensus sequence logos to more easily compare tree subgroups
 - Use 'Make groups for selection' to subdivide groups by specific mutation
- Questions
 - How can you navigate the sub-groups of a large alignment ?

Alignment & analysis

- Session 3
 - Sequence DB refs and Sequence Features
 - Protein secondary structure prediction

Sequence Features

Manual section 2.8

Getting and working with sequence features and annotation

- Sequence Databases
- Sequence feature sources
 - DAS Sequence feature retrieval
 - GFF and Jalview feature files
- Visualizing features
 - Highlighting annotated regions
 - Shading and reordering based on scores and labels

	Sequence Feature Settings		
	Feature Settings DAS Settings		
	🗹 uniprot	Pfam Other Features	
	🗹 PDBsum_protprot	🗸 cbs_total	
	Feature Type	Colour	Display
	DISULFID		
	Protein-protein contact		
	MOD_RES		
	ISOFORM		
	PHOSPHORYLATION (S)		
	PHOSPHORYLATION (Y)		
	INIT_MET		
	PHOSPHORYLATION (T)		
P51477P DF - PCSVSLQPAPSOVGKA	NES-SIGNAL		
P51484P ENA - PPSVILQPGSEDQGRI			
P32122 P ASS - PSSVTLQPGDDDQGKF			
P08168 P D Y L - P C S V M L Q P A P Q D V G K 🛽			
P53179 P R G R G M - L S S I K F E F			
Q09889PPDI-PDSIEGIF			
P30647 P L N C - P S S Y E S Q F			
O45782 P K S L - P S S F E G E F			
076685P INV - PPSF EGK	PROSITE		
017812P EN L - POSE EG PE			
	CHAIN		
	Pfam		
	ProDom		
	Invert Selection		
	OK Cancel Load Colours Save Colours		

Sequence Features Section 2.8.1-3 & Ex 27

- Annotate the whole or part of a sequence
- Database refs are special case.
- Tasks
 - Visualise, create, modify, import and export features.

Sequence Features Section 2.6.1-3 & Ex 27

- Annotate the whole or part of a sequence
- Database refs are special case.
- Tasks
 - Visualise, create, modify, import and export features.
- Questions
 - What are the different types of file formats available for import and export
 - What services allow you to discover annotation for sequence ?

Sources of sequence feature data

- Jalview sequence annotation files
- DAS sources
- GFF files
- Certain 'rich' alignment formats
 - Stockholm
 - AMSA

Retrieval from External Databases

DAS allows Jalview access to Over 270 Sequence Databases...

	Latimeria_chalumnae.LatCha1.reference (LatCha Scaffold 1) (DAS)	-
	Schistosoma_mansoni.sma_v3.1.reference (sma_v Scaffold 3.1) (DAS)	ſ
۲	RGSC	
•	TREESHREW	
	RFAM (Full)	
	PDB	
v	UniProt	
	Cosmic_Protein_Mutation (UniProt Protein Sequence) (DAS)	
	merops (UniProt Protein Sequence) (DAS)	
	💾 pfam (UniProt Protein Sequence) (DAS)	
	Prosite Features (matches) (UniProt Protein Sequence) (DAS)	
	uniprot (UniProt Protein Sequence) (DAS)	
	Uniprot 2010_09 (UniProt Protein Sequence) (DAS)	
	Trichoplax_adhaerens.TRIAD1.reference (TRIAD Scaffold 1) (DAS)	
	Cavia_porcellus.cavPor3.reference (cavPor Scaffold 3) (DAS)	
	Petromyzon_marinus.Pmarinus_7.0.reference (Pmarinus_ Scaffold 7.0) (DAS)	
	Ciona_savignyi.CSAV2.0.reference (CSAV Reftig 2.0) (DAS)	
	Myotis_lucifugus.Myoluc2.0.reference (Myoluc Scaffold 2.0) (DAS)	
	Takifugu_rubripes.FUGU4.reference (FUGU Scaffold 4) (DAS)	
	MEDAKA	

Example: P15498

Sequence Features Dialog box

Jalview and Sequence Databases Sec 2.9.1 Ex. 29

- Can retrieve new sequences or match against existing records using IDs
- Task
 - Recover the Uniprot annotation for the ferredoxin sequences using their IDs
 - Verify retrieval by examining sequence annotation

The Distributed Annotation System Section 2.9.2, Exercise 30

- Web servers that jalview can use to discover annotation for a sequence
- Task
 - Browse available DAS sources for protein sequences
 - Retrieve annotation for the ferredoxin alignment.

The Distributed Annotation System Section 2.9.2, Exercise 30

- Web servers that jalview can use to discover annotation for a sequence
- Task
 - Browse available DAS sources for protein sequences
 - Retrieve annotation for the ferredoxin alignment.
- Question
 - What does the 'optimise order' button do?

Working with sequence features Ex 32 c,d,e (Sec 2.9.4 P. 80)

- Task
 - Shading features using labels and scores
 - Sorting alignment using feature scores
- ONLY ATTEMPT: 32c, d, e
 - DAS servers mentioned in exercise are not currently available
 - Instead experiment with
 - Uniprot CHAIN annotation

Shading, thresholding, colour by label.

Working with sequence features Ex 32c,d,e (Sec 2.9.4 P. 80)

- Task
 - Shading features using labels
 - Sorting alignment using features
- Questions
 - What types of features are best displayed with a 'label' colourscheme ?
 - [If feature scores were available] How would you display only the highest or lowest scoring features ?

Protein secondary structure prediction

Section 2.6 onwards in the Manual Page 65

Protein Secondary Structure Prediction Sec. 2.6

0	😑 😁 JNet prediction on visible FER_CAPAA using alignment from MuscleWS alignment of Uniref50	
File	e Edit Select View Format Colour Calculate Web Service	
FER_0	 Neural network trained on amino acid profiles 	
FER1. Q93)	 Predicts Helix, shEet, or Coil based on sliding window 	
PER1 Q7X FER1	 Also predicts coiled coils and surface accessibilities 	
FER1, FER3, FER1	 Server can take 	
FER_I	– Single Sequence	4
Q932	 Service find homologs with PSI-Blast 	*
	 Alignment 	
	 Service uses MSA to calculate profile for prediction 	m

Exercise 26

- Tasks
 - Perform a variety of Jnet predictions
 - Note the effect of hidden regions
 - Learn about sequence associated annotation
- Questions
Exercise 26

- Tasks
 - Perform a variety of Jnet predictions
 - Note the effect of hidden regions
 - Learn about sequence associated annotation
- Questions
 - What other data does Jnet provide ?
 - Which is better a PSI blast prediction or an MSA based prediction ?
 - What happens when you have hidden regions ?

Session 4

- Working with structures
 - Viewing 3D structures
- Mapping data onto structure
 - Disorder prediction
 - Alignment reliability
- RNA Structure

Desktop Structure Visualization 3D structures and 2D RNA diagrams

http://jmol.sourceforge.net/

VARNA Visual Analysis of RNA

http://varna.lri.fr/

Associating structures with sequences

- Local PDB file
 - Attach PDB file to sequence manually
 - drag and drop to match files to sequences by ID
- Structures in the PDB database
 - Provide PDB id (and chain) for sequence
 - Discover references via sequence database

Protein Structures in Jalview Sec 2.1. Exercise 14

- Task
 - Discover PDB structures for ferredoxin sequence(s)
 - Note use

Fetch Database Refs->UNIPROT->Uniprot

 Save and load structures and manipulate colouring

Protein Structures in Jalview Sec 2.1. Exercise 14

- Task
 - Discover PDB structures for ferredoxin sequence(s)
 - Save and load structures and manipulate colouring
- Questions
 - How does Jalview match up sequence data to structural data

Superposing Structures using Alignments Sec 2.1.4 – Exercise 15

- Task
 - Align structures using the ferredoxin alignment
 - If 'View all N structures' doesn't align structures:
 - Use Jmol->Align menu
 - Experiment with views to control what part of the alignment is used to superimpose the structures

Superposing Structures using Alignments Sec 2.1.4 – Exercise 15

- Task
 - Align structures using the ferredoxin alignment
 - Experiment with views to control what part of the alignment is used to superimpose the structures
- Questions
 - What colourscheme would highlight the conserved parts of the structures ?
 - Which view gave the 'best' structure superposition ?
 - How did you decide this ?

Colouring structures using many multiple alignments Sect 2.1.5. Exercise 16

Supplementary exercises

• View the PDF from

www.jalview.org/training/tutorialmaterials/2014/Dundee/Oct

- 3 Short exercises
 - Protein Disorder prediction
 - Calculating/importing alignment quality scores
 - RNA Secondary & Tertiary structure

Protein Disorder prediction (Supplementary Exercise)

- Complementary problem to secondary structure prediction
 - Recognise structured & unstructured domains
 - Predict holes in density maps (REM450)
 - Detect flexible loops ('HOTLOOPS')
- Programs provided by JABAWS 2 employ
 - Machine learning methods (DisEMBL)
 - Similarity to disordered sequences (RONN)
 - Empirical amino acid statistics (IUPred, GlobPlot)

Disorder Predictions from JABAWS

Disorder in Interleukin 7

RNA 2nd-ary Structure

2.8.1 - Interactive Alignment based RNA 2nd_ary Structure Prediction ViennaRNA

2.8.1 - Interactive Alignment based RNIA 2nd_ary Structure Prediction ViennaRNA

MFE Structure

StrucConsensus

- Can be enabled for any view
- Updated if alignment changes
- settings & results saved in Jalview project

Implemented by our 2013 Summer student

Tooltips show alternative base pairs

T-COFFEE alignment reliability scores

9.00-9.15am.

Overview of the day

9.15am - 10.30am. Session 1. Introduction to Jalview

- starting the application, importing alignments, basic editing and creating figures.

10.30-11am.

Coffee

11am - 12.30pm.

Session 2: Alignment & alignment analysis

- Creating sequence alignments, importing and calculating trees, tree based alignment analysis

12.30pm to 1.30pm. Lunch

1.30pm – 3.00pm. Session 3: Annotating sequences & alignments

- Creating and viewing sequence annotation
- Protein Secondary structure prediction

3.00pm — 3.30pm

Coffee (Late! Sorry !)

3.30pm – 4.30pm. Session 4: Working with molecular structures

- Viewing 3D Structures, superimpositions, mapping disorder and alignment quality
- Viewing RNA Secondary Structure

4.30pm – 4.45pm. Wrapup — what we didn't cover today ... And then to Duke's Corner!

GLOBPLOT 2

Jalview 2.8 and RNA 2nd-ary

DNA and Protein in Jalview

- Discussed in Section 2.10 of manual
- From DNA to Protein
 - Calculations => Translate cDNA
 - View protein annotation on exons using EMBL records
- From protein to DNA
 - Recover DNA for proteins using EMBL cross references

Things I haven't talked about ...

Currently available in v 2.8.1

- Internationalisation (Spanish, so far)
- View flanking regions (Proteomics)
- More score models for PCA/Trees
- View 'representative structures'
- Select columns by feature..

Select column by feature

2.8.2 alpha - New look Jpred results

Protein Secondary Structure Prediction

Secondary structure from 3D data

http://jmol.sourceforge.net

- Jmol includes a Java port of **DSSP**
 - Courtesy of the Vriend Lab
- Jalview 2.8.2 extracts secondary structure from 3D data
RNAView, pyRNA

- Fabrice Jossinet's pyRNA server includes RNAView^{*}
 - Identify and characterise base pair interactions in 3D structure
- Used by Jalview to obtain secondary structure for RNA 3D data

PD PDB/2GIS/2GIS/A/1-96	1	G	G	С	U	U	A	U	С	A	A	G	A	G	A	1.
Sec. str.		((((((((12		(((13	
PDB/2GIS/2GIS/A/1-96	15	G	G	U	G	G	A	G	G	G	A	c	U	G	G	2:
Sec. str.		(((((((((<	<	<	+	L.
PDB/2GIS/2GIS/A/1-96	29	с	С	C	G	A	U	G	A	A	A	С	С	С	G	4:
Sec. str.			4)			•	4))))))	(•
PDB/2GIS/2GIS/A/1-96	43	G	c	A	A	С	c	A	G	A	A	A	U	G	G	51
Sec. str.		4)	•	•	(((4	12	•	+)))	1
PDB/2GIS/2GIS/A/1-96	57	U	G	с	С	A	A	U	U	с	С	U	G	С	A	71
Sec. str.		4	•	<u>*:</u>	4	-				1.	>	>	>	((
PDB/2GIS/2GIS/A/1-96	71	G	С	G	G	A	A	A	С	G	U	U	G	A	A	84
Sec. str.		((((-		+)))))	-		
PDB 2GIS 2GIS A/1-96	85	A	G	A	U	G	A	G	с	С	A	а				9!
Sec. str.		2))))))))	•	2	ŝ			

* RNAView will shortly be replaced by **DSSR** (Xiang-Jun Lu)

Jalview and Chimera

0						Jalvie	wTest
	0	Distances	. CATLANS	ALC KALING	n Dinne fai	w deallow second as the	an tax metala
File	Edit	Select	View	Format	Colour	Calculate	Web Servi
				120		130	140
ip1P2683	1511.7_F	05/0/1-176	GTLTL	LNCTSKG	KARKPPS	STATTEN.	LEENKISKE
(WP132)	3218.7 W	UNAN/1-177	GTTIL	LNCT GOVE	CORKEAN	LGEAGPTES	LEENKSLKE
(p)PJ EJ a	6818.7_N	NO15E/1-154	GTQTL	VACTSK-			EEKNVKE
WQ\$82	G61117_F	96/1-176	GTLTL	FNCTSKVI	KGRKPPS	GRAGITEN	LEENESIKE
rp(/P564)	781A.7_R	AT/1-154	GTQTL	VNCTSK-			EEKTIKE
14/ 9285	488275	HEEP//1-176	GILTL	LNCTSKG	CANADA	LSEAGPTEN.	LESBKSIKE
	2012178						
	2012/078						
	2012/170						
	801.178						
	2013.078 2						Uit
		Conservation					ui.
		Conservation					
		Conservation					
		Conservation					
		Conservation					
		Conservation Quality					
		Conservation Quality					
		Conservation Quality					
		Conservation Quality Conservation					
		Conservation Quality Conservation					
		Conservation Quality Conservation		LNCT SK+I	CGAKPPS	GEAGPTKN	
		Conservation Quality Consense		LNCT SR+	KGRKPPS	GEAQPTEN	
	<u>i.e</u>	Conservation Quality Conservation		LNCTSR+I	KGRKPPS	LGEAQPTKN	
	1.LE I III	Conservation Quality Conservation Technological Predivis Juong		LNCT SR+1	KGRKPPS	LGEAQPTKN	
		Conservation Quality Conservation Ted/MS Share Pred/MS Share		LNCT SR+1	COXPPS	L GEAQPTKN	
	ين الا	Conservation Quality Conservation Technological Technological Technological			CORPPS	LGEAQPTKN	

Human Interleukin-7 structure in Chimera coloured according to IUPred disorder prediction made in Jalview, with a glutamate sidechain

Jalview + VARNA + Chimera

File Edit Select View Format Colour Calculate WebService U G G C C C G A U G A A A C C C G G C 44 UDCAGOOA >>(((((111111 Sec. str GAGCCAB 95 Sec. str squence 1 10: POBL207512C351A Nucleothie: Advence (62 Structures Manager Sec. str. (with dags) trimmed Sec. str tr. (with gaps)

Jalview Desktop uses UCSF Chimera to show structures:

- Optional Enabled as a user preference
- Structures coloured & superposed like with
 Jmol
- Positional highlighting from Jalview->Chimera

<u>The Jalview</u> <u>developers</u> **Michele Clamp** *Harvard & MIT.*

James Cuff Harvard & MIT

Steve Searle

Sanger, UK

Andrew Waterhouse Basel, Switzerland. <u>RNA Features</u> Lauren Lui UC Santa Cruz, USA. Jan Engelhardt Univ. Leipzig, Germany. Yann Ponty (VAPNA)

Yann Ponty (**VARNA**) École Polytechnique,

<u>T-COFFEE Scores</u> **Paolo di Tomasso** Notredame Group, CRG, Spain.

Geoff Barton

David Martin (**Teaching**) Sasha Sherstnev (**JABAWS**) Peter Troshin (**JABAWS**) Barry Strachan (**Iogo**) Tom Walsh (**Apache**) Ryan Maclaughlan (**CSS**) Andrew Millar (**Drupal**) All the Jalview users, and

bioscience for the future

supported by www.jalview.org