9.00-9.15am.

Overview of the day

9.15am - 10.30am. Session 1. Introduction to Jalview

- starting the application, importing alignments, basic editing and creating figures.
- 10.30-11am.

Coffee

- 11am 11.30am **Geoff Barton: Multiple alignment and Analysis**
- Session 2: Alignment & alignment analysis 11.30am - 12.30pm.
 - Creating sequence alignments, importing and calculating trees, tree based alignment analysis

12.30pm to 1.30pm. Lunch

1.30pm – 3.00pm. Session 3: Annotating sequences & alignments

- Creating and viewing sequence annotation
- Protein Secondary structure prediction

3.00pm – 3.30pm

Coffee

3.30pm – 4.30pm. Session 4: Working with molecular structures

- Viewing 3D Structures, superimpositions, mapping disorder and alignment quality
- Viewing RNA Secondary Structure

4.30pm – 4.45pm. Wrapup – what we didn't cover today

Course materials

Everything is online

http://www.jalview.org/tutorial/trainingmaterials/2014/London/Dec/

– These slides

- Jalview v2.8.2 Manual (v1.5.0)
 - Log in and
 - Open the manual in your PDF Viewer NOW

- Session 4
 - Working with structures
 - Viewing PDB data
 - Superimposing structures
 - Mapping data onto structure
 - Disorder prediction
 - RNA helix shading

Desktop Structure Visualization 3D structures and 2D RNA diagrams

http://jmol.sourceforge.net/

VARNA Visual Analysis of RNA

http://varna.lri.fr/

Associating structures with sequences

- Local PDB file
 - Attach PDB file to sequence manually
 - drag and drop to match files to sequences by ID
- Structures in the PDB database
 - Provide PDB id (and chain) for sequence
 - Discover references via sequence database

New Structure tab in Jalview Preferences

Checkboxes for:

- Secondary structure
 - Protein DSSP built in
 - RNAView web service
- Temperature factor
- Set default 3D viewer
 - Jmol
 - Chimera

Preferences					×
Connections Output	ut Editing	DAS S	Settinas	Web Servio	es
Visual	Colours			Structure	
Structure Options Process secondary str	ucture from PD	в			
Use RNAView for s	econdary struct	ture			
Add secondary str	ucture annotatio	on to align	ment		
Add Temperature	Factor annotatio	on to align	ment		
Default structure viewer	CHIMERA	•			
Path to Chimera program	D:\Apps\Chim	nera 1.10\	bin\chime	ra.exe	
	ОК	Cancel]		

When Protein annotation is enabled

- Add Reference Annotations
 - Available when any sequence associated annotation can be added to the current view
 - Access via Sequence ID and 'Selection' submenu

Protein Structures in Jalview Sec 2.1. Exercise 14

- Task
 - Discover PDB structures for ferredoxin sequence(s)
 - Note use

Fetch Database Refs->UNIPROT->Uniprot

 Save and load structures and manipulate colouring

Protein Structures in Jalview Sec 2.1. Exercise 14

- Task
 - Discover PDB structures for ferredoxin sequence(s)
 - Save and load structures and manipulate colouring
- Questions
 - How does Jalview match up sequence data to structural data
 - Did anyone try 'Add Reference Annotation' ?

Superposing Structures using Alignments Sec 2.1.4 – Exercise 15

- Task
 - Align structures using the ferredoxin alignment
 - If 'View all N structures' doesn't align structures:
 - Use Jmol->Align menu
 - Experiment with views to control what part of the alignment is used to superimpose the structures

Superposing Structures using Alignments Sec 2.1.4 – Exercise 15

- Task
 - Align structures using the ferredoxin alignment
 - Experiment with views to control what part of the alignment is used to superimpose the structures
- Questions
 - What colourscheme would highlight the conserved parts of the structures ?
 - Which view gave the 'best' structure superposition ?
 - How did you decide this ?

Colouring structures using many multiple alignments Sect 2.1.5. Exercise 16

Protein Disorder prediction Exercise 27

- Complementary problem to secondary structure prediction
 - Recognise structured & unstructured domains
 - Predict holes in density maps (REM450)
 - Detect flexible loops ('HOTLOOPS')
- Programs provided by JABAWS 2 employ
 - Machine learning methods (DisEMBL)
 - Similarity to disordered sequences (RONN)
 - Empirical amino acid statistics (IUPred, GlobPlot)

Disorder Predictions from JABAWS

Disorder in Interleukin 7

RNA 2nd-ary Structure

2.8.1 - Interactive Alignment based RNA 2nd_ary Structure Prediction ViennaRNA

2.8.1 - Interactive Alignment based RNIA 2nd_ary Structure Prediction ViennaRNA

D.melanogaster.3/1-08 G = UG G C G C U D.melanogaster.2/1-63 C = AUUC A A C D.melanogaster.1/1-65 G = AG C C = C U R.norvegicus.7/1-66 C = C G G C A C U R.norvegicus.6/1-67 G = C C G C U U C R.norvegicus.5/1-62 G = U U U U U C C R.norvegicus.4/1-61 G = U C A G A U G

- Can be enabled for any view
- Updated if alignment changes
- settings & results saved in Jalview project

Implemented by our 2013 Summer student

Tooltips show alternative base pairs

DNA and Protein in Jalview

- Discussed in Section 2.10 of manual
- From DNA to Protein
 - Calculations => Translate cDNA
 - View protein annotation on exons using EMBL records
- From protein to DNA
 - Recover DNA for proteins using EMBL cross references

Jalview 2.8 and RNA 2nd-ary

RNAView, pyRNA

- Fabrice Jossinet's pyRNA server includes RNAView^{*}
 - Identify and characterise base pair interactions in 3D structure
- Used by Jalview to obtain secondary structure for RNA 3D data

PD PDB 2GIS 2GIS A/1-96 Sec. str.	1	G (G (C (U (U (A (U (C (A	A	G (A (G (A	14
PDB 2GIS 2GIS A/1-96 Sec. str.	15	G (G (U (G (G (A (G (G (G (A	C <	U <	G <	G)	21
PDB 2GIS 2GIS A/1-96 Sec. str.	29	с	C)	C)	G	A	U	G)	A)	A)	A)	C)	C)	C)	G (4;
PDB 2GIS 2GIS A/1-96 Sec. str.	43	G)	C)	A	A	C (C (A (G (A	A	A)	U)	G)	G)	5(
PDB 2GIS 2GIS A/1-96 Sec. str.	57	U (G	с	C)	A	A	U	U (с	C >	U >	G >	C (A (7(
PDB 2GIS 2GIS A/1-96 Sec. str.	71	G (C (G (G (A	A	A)	C)	G)	U)	U)	G)	A	A	84
PDB 2GIS 2GIS A/1-96 Sec. str.	85	A)	G)	A)	U)	G)	A)	G)	C)	C)	A	a)				9!

* RNAView will shortly be replaced by **DSSR** (Xiang-Jun Lu)

Jalview Flavours

GLOBPLOT 2

Things I haven't talked about ...

T-COFFEE alignment reliability scores

Select column by feature

Jalview and Chimera

0

						Juivic	w Test
00	0	/Volumes	/All/m	ac-hd/Use	rs/jimp/g	it/jalview_cle	ean/examples
File	Edit	Select	View	Format	Colour	Calculate	Web Servi
			1	120		130	140
o P2689: o P1323;	5 1L7_BC 211L7_HL	VIN/1–176 IMAN/1–177	GTLTL	LNCTSKGI	KGRKPPS KGRKPAA	LS EAQPTKN LGEAOPTKS	LEENKSSKE LEENKSLKE
P1 01 6	8/11.7_M	DUSE/1-154	GTQTL	VNCTSK-			EEKNVKE
0/ Q9N20	26(11,7_P) 2011 7_D 4	G/1-176	GTLTL	FNCTSKVI	K G R K <mark>P</mark> P S	LGEAQLTKN	LEENKSLKE
02854	OHL7_SH	EEP/1-176	GTLTL	LNCTSKG	GRKPPS	LGEAQPTKN	LEENKS LKE
	(Conservation	**66*	7 * * * 87 - •			*7 *95 **
	¢	Conservation Quality	**66*	7 ***87			*7 * 9 5 * *
	(Conservation Quality Consensus	**66*	7***87	(GRKPPS	GFAOPT KN	
	(Conservation Quality Consensus	ST LT L	7 * * * 8 7	<gr kpps<="" td=""><td>LGEAQPTKN</td><td></td></gr>	LGEAQPTKN	
	(IUPr	Conservation Quality Consensus edWS (Short) redWS (Long)	GT LT L	7 * * * 8 7	< GR K PP S	LGEAQPTKN	
		Conservation Quality Consensus edWS (Short) redWS (Long)	**66* GT LT L	7	(GRKPPS	LGEAQPTKN	

Human Interleukin-7 structure in Chimera coloured according to IUPred disorder prediction made in Jalview, with a glutamate sidechain

Jalview + VARNA + Chimera

File Edit Select View Format Colour Calculate Web Service 23 G A C U G G C C C G A U G A A A C C C G G C 44 $\underline{<<()} (\underline{)} (\underline$ Sec. str A A C C A G A A A U G G U G C C A A U U C C 66 <u>((((, ,)))))</u>, . . . <u>(</u>, <u>></u> |A/1-96 67 <mark>UGCAGCGGAAACGUUG</mark>AA<mark>AGAU</mark>88 Sec. str. 89 GAGCCAa 95)))))) .]Sec. str. Sequence 1 ID: PDB|2GIS|2GIS|A Nucleotide: Adenine (62) Structures Manager Sec. str. (with gaps) trimmed Sec. str. tr. (with gaps)

Jalview Desktop uses UCSF Chimera to show structures:

- Optional Enabled as a user preference
- Structures coloured & superposed like with
 Jmol
- Positional highlighting from Jalview->Chimera

Jalview & Dundee Protein Resource Developers

Mungo Carstairs

Tochukwu (Charles) Ofoegbu Supported by Supported by Charles) Ofoegbu Drozdetskiy Jnet Protein prediction and analysis services

RRSR

bioscience for the future

<u>The Jalview</u> <u>developers</u> **Michele Clamp** *Harvard & MIT.*

James Cuff Harvard & MIT

Steve Searle

Sanger, UK

Andrew Waterhouse Basel, Switzerland.

supported by

<u>RNA Features</u> Lauren Lui UC Santa Cruz, USA. Jan Engelhardt Univ. Leipzig, Germany.

Yann Ponty (VARNA) École Polytechnique,

<u>T-COFFEE Scores</u> **Paolo di Tomasso** Notredame Group, CRG, Spain.

Geoff Barton

David Martin (**Teaching**) Sasha Sherstnev (**JABAWS**) Peter Troshin (**JABAWS**) Barry Strachan (**Iogo**) Tom Walsh (**Apache**) Ryan Maclaughlan (**CSS**) Andrew Millar (**Drupal**) All the Jalview users, and

bioscience for the future

d by www.jalview.org